DOI QR코드

DOI QR Code

Effects of Soybean Small Peptides on Rumen Fermentation and on Intestinal and Total Tract Digestion of Luxi Yellow Cattle

  • Wang, W.J. (Department of Animal Sciences and Technology, Shandong Agricultural University) ;
  • Yang, W.R. (Department of Animal Sciences and Technology, Shandong Agricultural University) ;
  • Wang, Y. (Agriculture and Agri-Food Canada, Lethbridge Research Centre) ;
  • Song, E.L. (Institute of Animal Science Veterinary Medicine, Shandong Academy of Agricultural Sciences) ;
  • Liu, X.M. (Institute of Animal Science Veterinary Medicine, Shandong Academy of Agricultural Sciences) ;
  • Wan, F.C. (Institute of Animal Science Veterinary Medicine, Shandong Academy of Agricultural Sciences)
  • Received : 2012.05.19
  • Accepted : 2012.09.11
  • Published : 2013.01.01

Abstract

Four Luxi beef cattle ($400{\pm}10$ kg) fitted with ruminal, duodenal and ileal cannulas were used in a $4{\times}4$ Latin square to assess the effects of soybean small peptide (SSP) infusion on rumen fermentation, diet digestion and flow of nutrient in the gastrointestinal tract. The ruminal infusion of SSP was 0 (control), 100, 200 and 300 g/d. Ruminal SSP infusion linearly (p<0.01) and quadratically (p<0.01) increased microbial protein synthesis and rumen ammonia-N concentration. Concentrations of total volatile fatty acid were linearly increased (p = 0.029) by infusion SSP. Rumen samples were obtained for analysis of microbial ecology by real-time PCR. Populations of rumen Butyrivibrio fibrisolvens, Streptococcus bovis, Ciliate protozoa, Ruminococcus flavefaciens, and Prevotella ruminicola were expressed as a proportion of total Rumen bacterial 16S ribosomal deoxyribonucleic acid (rDNA). Butyrivibrio fibrisolvens populations which related to total bacterial 16S rDNA were increased (p<0.05), while Streptococcus bovis populations were linearly (p = 0.049) and quadratically (p = 0.020) decreased by infusion of SSP. Apparent rumen digestibility of DM and NDF were (Q, p<0.05; L, p<0.05) increased with infusion SSP. Total tract digestion of DM, OM and NDF were linearly (p<0.01) and quadratically (p<0.01) increased by infusing SSP. The flow of total amino acids (AA), essential amino acids (EAA) and individual amino acids were linearly (p<0.01) and quadratically (p<0.01) increased with infusion SSP. The digestibility of Lysine was quadratically (p = 0.033) increased and apparent degradability of Arginine was linearly (p = 0.032) and quadratically (p = 0.042) increased with infusion SSP. The results indicated that infusion SSP could improve nutrient digestion, ruminal fermentation and AA availability.

Keywords

References

  1. Adibi, S. A., H. Lochs, N. N. Abumrad, H. Daniel and J. A. Vazquez. 1993. Removal of glycylglutamine from plasma by individual tissues: mechanism and impact on amino acid fluxes in postabsorption and starvation. J. Nutr. 123:325-331.
  2. Andries, J. I., F. X. Buysse, D. L. De Brabander and B. G. Cottyn. 1987. Isoacids in ruminant nutrition: their role in ruminal and intermediary metabolism and possible influences on performances-a review. Anim. Feed. Sci. Technol. 18:169-180. https://doi.org/10.1016/0377-8401(87)90069-1
  3. AOAC. 1997. Official methods of analysis. 16th edn. Association of Official Analytical Chemists, Arlington, Virginia, USA.
  4. Baldwin, R. L. and M. J. Allison. 1983. Rumen metabolism. J. Anim. Sci. 57:461-477.
  5. Bryant, M. P. 1973. Nutritional requirements of the predominant rumen cellulolytic bacteria. Fed. Proc. 32:1809-1813.
  6. Carro, M. D. and E. L. Miller. 1999. Effect of supplementing a fibre basal diet with different nitrogen forms on ruminal fermentation and microbial growth in an in vitro semi-continuous culture system (RUSITEC). Br. J. Nutr. 82:149-157. https://doi.org/10.1017/S0007114599001300
  7. Cecava, M. J., N. R. Merchen, L. L. Berger and G. C. Fahey, Jr. 1990. Intestinal supply of amino acids in sheep fed alkaline hydrogen peroxide-treated wheat straw-based diets supplemented with soybean meal or combinations of corn gluten meal and blood meal. J. Anim. Sci. 68:467-477.
  8. Chalupa, W. 1976. Degradation of amino acids by the mixed rumen microbial population. J. Anim. Sci. 43:828-834.
  9. Chen, G., H. J. Strobel, J. B. Russell and C. J. Sniffen. 1987. Effect of hydrophobicity on utilization of peptides by ruminal bacteria in vitro. Appl. Environ. Microbial. 53:2021-2025.
  10. Chikunya, S., C. J. Newbold, L. M. Rode, X. B. Chen and R. J. Wallace. 1996. Influence of dietary rumen-degradable protein on bacterial growth in the rumen of sheep receiving different energy sources. Anim. Feed. Sci. Technol. 63:333-340. https://doi.org/10.1016/S0377-8401(96)00999-6
  11. Cotta, M. A. and R. B. Hespell. 1986. Proteolytic activity of the ruminal bacterium Butyrivibrio fibrisolvens. Appl. Environ. Microbiol. 52:51-58.
  12. Cruz Soto, R., Samirah A. Muhammed, C. J. Newbold, C. S. Stewart and R. J. Wallace. 1994. Influence of peptides, amino acids and urea on microbial activity in the rumen of sheep receiving grass hay and on the growth of rumen bacteria in vitro. Anim. Feed Sci. Technol. 49:151-161. https://doi.org/10.1016/0377-8401(94)90088-4
  13. Dabrowski, K., K. Lee and J. Rinchard. 2003. The smallest vertebrate, teleost fsh, can utilize synthetic dipeptide based diets. J. Nutr. 133:4225-4229.
  14. Davidson, S., B. A. Hopkins, D. E. Diaz, S. M. Bolt, C. Brownie, V. Fellner and L. W. Whitlow. 2003. Effects of amounts and degradability of dietary protein on lactation, nitrogen utilization, and excretion in early lactation Holstein cows. J. Dairy Sci. 86:1681-1689. https://doi.org/10.3168/jds.S0022-0302(03)73754-0
  15. Denman, S. E. and C. S. McSweeney. 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58:572-582. https://doi.org/10.1111/j.1574-6941.2006.00190.x
  16. Fu, C. J., E. E. Felton, J. W. Lehmkuhler and M. S. Kerley. 2001. Ruminal peptide concentration required to optimize microbial growth and efficiency. J. Anim. Sci. 79:1305-1312.
  17. Gilbert, E. R., E. A. Wong and K. E. Webb, Jr. 2008. Board-invited review: peptide absorption and utilization: implications for animal nutrition and health. J. Anim. Sci. 86:2135-2155. https://doi.org/10.2527/jas.2007-0826
  18. Griswold, K. E., G. A. Apgar, J. Bouton and J. L. Firkins. 2003. Effects of urea infusion and ruminal degradable protein concentration on microbial growth, digestibility, and fermentation in continuous culture. J. Anim. Sci. 81:329-336.
  19. Griswold, K. E., W. H. Hoover, T. K. Miller and W. V. Thayne. 1996. Effect of form of nitrogen on growth of ruminal microbes in continuous culture. J. Anim. Sci. 74:483-491.
  20. Hristov, A. N., R. P. Etter, J. K. Ropp and K. L. Grandeen. 2004. Effect of dietary crude protein level and degradability on ruminal fermentation and nitrogen utilization in lactating dairy cows. J. Anim. Sci. 82:3219-3229.
  21. Hu, W. L., J. X. Liu, J. A. Ye, Y. M. Wu and Y. Q. Guo. 2005. Effect of tea saponin on rumen fermentation in vitro. Anim. Feed Sci. Technol. 120:333-339. https://doi.org/10.1016/j.anifeedsci.2005.02.029
  22. Jones, D. F., W. H. Hoover and T. K. Miller Webster. 1998. Effects of concentrations of peptides on microbial metabolism in continuous culture. J. Anim. Sci. 76:611-616.
  23. Kazemi-Bonchenari, M., K. Rezayazdi, A. Nikkhah, H. Kohram and M. Dehghan-Banadaky. 2010. The effects of different levels of sodium caseinate on rumen fermentation pattern, digestibility and microbial protein synthesis of Holstein dairy cows. Afr. J. Biotechnol. 9:1990-1998.
  24. Khafipour, E., S. C. Li, J. C. Plaizier and D. O. Krause. 2009. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Appl. Environ. Microbiol. 75:7115-7124. https://doi.org/10.1128/AEM.00739-09
  25. Khalili, H. and P. Huhtanen. 2002. Effect of casein infusion in the rumen, duodenum or both sites on factors affecting forage intake and performance of dairy cows fed red clover-grass silage. J. Dairy Sci. 85:909-918. https://doi.org/10.3168/jds.S0022-0302(02)74149-0
  26. Kotzamanis, Y. P., E. Gisbert, F. J. Gatesoupe, J. Zambonino Infante and C. Cahu. 2007. Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 147:205-214. https://doi.org/10.1016/j.cbpa.2006.12.037
  27. Lindemann, M. D., G. L. Cromwell, H. J. Monegue, H. Cook, K. T. Soltwedel, S. Thomas and R. A. Easter. 2000. Feeding value of an enzymatically digested protein for early-weaned pigs. J. Anim. Sci. 78:318-327.
  28. Liu, H., L. Wang, L. S. Li and L. B. Wang. 2009. Effects of graded duodenal infusion of soybean small peptides on blood indices, milk composition and mRNA expression of PepT1 in small intestine in lactating goats. Chin. J. Anim. Nutr. 21319-325.
  29. McAllan, A. B. 1991. Carbohydrate and nitrogen metabolism in the forestomach of steers given untreated or ammonia treated barley straw diets supplemented with urea or urea plus fishmeal. Anim. Feed Sci. Technol. 33:195-208. https://doi.org/10.1016/0377-8401(91)90060-6
  30. Newey, H. and D. H. Smyth. 1960. Intracellular hydrolysis of dipeptides during intestinal absorption. J. Physiol. 152:367-380. https://doi.org/10.1113/jphysiol.1960.sp006493
  31. Pittman, K. A. and M. P. Bryant. 1964. Peptides and other nitrogen sources for growth of Bacteroides ruminicola. J. Bacteriol. 88:401-410.
  32. Puchala, R., S. G. Pierzynowski, T. Wuliji, A. L. Goetsch, T. Sahlu, M. Lachica and S. A Soto-Navarro. 2002. Effects of small peptides or amino acids infused to a perfused area of the skin of Angora goats on mohair growth. J. Anim. Sci. 80:1097-1104.
  33. Remond, D., L. Bernard and C. Poncet. 2000. Free and peptide amino acid net flux across the rumen and the mesenteric- and portal-drained viscera of sheep. J. Anim. Sci. 78:1960-1972.
  34. Richardson, C. R. and E. E. Hatfield. 1978. The limiting amino acids in growing cattle. J. Anim. Sci. 46:740-745.
  35. Russell, J. B. and R. J. Wallace. 1997. Energy yielding and energy consuming reactions. In: The Rumen Microbial Ecosystem, Second Ed. (Ed. P. N. Hobson and C. S. Stewart), Springer, Heidelberg, Germany. pp. 246-282.
  36. Russell, J. B., J. D. O'Connor, D. G. Fox, P. J. Van Soest and C. J. Sniffen. 1992. A net carbohydrate and protein system for evaluating cattle diets: I. ruminal fermentation. J. Anim. Sci. 70:3551-3561.
  37. Russi, J. P., R. J. Wallace and C. J. Newbold. 2002. Influence of the pattern of peptide supply on microbial activity in the rumen simulating fermenter (RUSITEC). Br. J. Nutr. 88:73-80. https://doi.org/10.1079/BJN2002585
  38. SAS. 2000. Users guide. Release 8.1 ed. SAS Institute Inc., Cary, NC, USA.
  39. Satter, L. D. 1986. Protein supply from undegraded dietary protein. J. Dairy Sci. 69:2734-2749. https://doi.org/10.3168/jds.S0022-0302(86)80722-6
  40. Satter, L. D. and L. L. Slyter. 1974. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 32:199-208. https://doi.org/10.1079/BJN19740073
  41. Scholljegerdes, E. J., P. A. Ludden and B. W. Hess. 2004. Site and extent of digestion and amino acid flow to the small intestine in beef cattle consuming limited amounts of forage. J. Anim. Sci. 82:1146-1156.
  42. Skoch, S. A., G. I. Shellig, R. E. Tucker and G. E. Mitchell. 1975. Interactions of amino acid degradation by rumen microbes. J. Anim. Sci. 40(Suppl. 1):197 (Abstr.).
  43. Uden, P., P. E. Colucci and P. J. Van Soest. 1980. Investigation of chromium, cerium, and cobalt as markers in digesta rate of passage studies. J. Sci. Food Agric. 31:625-632. https://doi.org/10.1002/jsfa.2740310702
  44. Van Soest, P. J. 1982. Nutritional ecology of the ruminant. Comstock, Cornell University Press, Ithaca, NY, USA.
  45. Wang, H. R., D.X. Lu, H. Y. Zhang, X. Y. Zhao and Q. Yi. 1998. The study on amino acid digestibility in small intestinal of sheep. Neimengu J. Anim. Sci. 2:18-21.
  46. Webb, K. E., Jr, J. C. Matthews and D. B. DiRienzo. 1992. Peptide absorption: a review of current concepts and future perspectives. J. Anim. Sci. 70:3248-3257.
  47. Williams, A. G. and G. S. Coleman. 1997. The rumen protozoa. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). Blackie Academic and Professional Publishers, London. pp. 73-139.
  48. Williams, C. H., D. J. David and O. Iismaa. 1962. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J. Agric. Sci. 59:381-385. https://doi.org/10.1017/S002185960001546X
  49. Zhang, B., L. Q. Xue, L. L. Li, Y. G. Chen, G. H. Wen and D. X. Hou. 2007. Effects of soybean small peptides on nitrogen balance, nutrient digestibility and several indices in the portal veinous plasma of goats. Small Ruminant Res. 72:1-10. https://doi.org/10.1016/j.smallrumres.2006.07.013
  50. Zimmerman, D. R., J. C. Sparks and C. M. Cain. 1997. Carry-over responses to an intestinal hydrolysate in weanling pig diets. J. Anim. Sci. 75(Suppl. 1):71(Abstr.).
  51. Zinn, R. A. and F. N. Owens. 1986. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Can. J. Anim. Sci. 66:157-166. https://doi.org/10.4141/cjas86-017

Cited by

  1. methane production vol.101, pp.5, 2017, https://doi.org/10.1111/jpn.12604
  2. Effects of antibacterial peptides on rumen fermentation function and rumen microorganisms in goats vol.14, pp.8, 2013, https://doi.org/10.1371/journal.pone.0221815