DOI QR코드

DOI QR Code

Characteristics of Soil Parameter for Lade's Single Work-Hardening Constitutive Model with Relative Density of Bottom ash

석탄회의 상대밀도에 따른 Lade 단일항복면 구성모델의 토질매개변수 특성

  • Kim, Chan-Kee (Dept. of Civil Engineering, Daejin University) ;
  • Lee, Jong-Cheon (Dept. of Civil Engineering & Landscape Architecture, Dongkang College)
  • Received : 2013.11.20
  • Accepted : 2013.12.23
  • Published : 2013.12.30

Abstract

This study was performed a series of the isotropic compression-expansion tests and the drained triaxial tests with various the relative densities 40%, 60%, 80% and 95% for bottom ash. Using the tests results the characteristic of the parameters of Lade's single hardening constitutive model were investigated. The soil parameters Kur and n representing elastic behavior are not much affected by the change of the relative density. The other parameters such as failure criterion(m, ${\eta}_1$), hardening function(c, p) and plastic potential(${\psi}_2$, ${\mu}$) are in a positive linear relationship with the relative density. Since the soil parameters h and ${\alpha}$ representing yield function do not change much to the change of relative density and also closely related to failure criterion, they can be replaced by failure criterion ${\eta}_1$. We also observed that predicted values from the Lade's single hardening constitutive model were well consistent with the observed data.

본 연구는 석탄회의 상대밀도를 40%, 60%, 80%, 95%로 각각 변화시켜 등방압축팽창시험과 구속압력을 달리한 배수삼축시험을 하였다. 그리고 이 시험자료를 이용하여 Lade의 단일항복면 구성모델의 토질매개변수의 변화 특성을 알아보았다. 그 결과 탄성성분을 나타내는 토질매개변수 Kur과 n은 상대밀도의 변화에 따른 영향이 미소하고 파괴규준, 경화함수, 소성포텐셜에 관련된 토질매개변수는 상대밀도의 증가에 따라 선형적인 증 감현상을 보이고 있다. 그리고 항복함수에 관련된 토질매개변수 h와 ${\alpha}$는 상대밀도에 따른 변화가 미세하고 파괴규준에 관련한 토질매개변수와 관련성이 매우 높아 파괴규준, ${\eta}_1$에 관한 식으로 대체할 수 있으며, 이 식을 이용하여 수치해석한 결과 양호하게 예측하고 있다.

Keywords

References

  1. Cho, Won-Bum (2011), "A Study on the Characteristics of Soil Parameter of Single Work-Hardening Constitutive Model", Ph. D. Thesis, University of Daejin. (In Korean)
  2. Chun, B. S. and Koh, Y. I. (1992), "The Proper Mixing Ratio of Fly Ash to Bottom Ash for Use of Highway Embankment and Subgrade Materials", Journal of the Korean Society of Civil Engineering, Vol.12, No.1, pp.177-186.
  3. Clough, R. W. and Duncan, J. M. (1971), "Finite Element Analysis of Retaining Wall Behaviour". Journal of the Geotechnical Engineering Division, ASCE, Vol.97, No. SM12, pp.1657-1673.
  4. Duncan, M, J. and Chang, C. Y. (1970), "Nonlinear analysis of stress and strain and strain in soil", Journal of the soil Mechanics and Foundation Division, ASCE, Vol.96 No. SM5, pp.1629-1653.
  5. Druker, D. C., Gibson, R. E and Henkel, D, J. (1957), "Soil mechanics and work-hardening theories of plasticity", Trans, Vol.122, pp.333-345.
  6. Jeong, J. S., Kim, C. K., Lee, M. S. (1992a), "Sensitivity of Parameters for Elasto-Plastic Constitutive Model". Journal of the Korean Geotechnical Society, Vol.8, No.2, pp.81-94. (In Korean)
  7. Jeong, J. S., Kim, C. K., Lee, M. S. (1992b), "Undrained Behaviour of Granular Soil Using Single Work-Hardening Model", Journal of the Korean Society of Civil Engineering, Vol.12, No.2, pp.177-189. (In Korean)
  8. Kim, M. K. and Lade, P. V. (1988 a), "Single Hardening Constitutive Model for Frictional Materials, I. Plastic potential function", Computers and Geotechnics, 5(4), pp.307-324. https://doi.org/10.1016/0266-352X(88)90009-2
  9. Kim, M. K. and Lade, P. V. (1988 b), "Single Hardening Constitutive Model for Frictional Materials, II Yield Criterion and Plastic Work Contours", Computers and Geotechnics, 6(1), pp.13-29. https://doi.org/10.1016/0266-352X(88)90053-5
  10. Kim, M. K. and Lade, P. V. (1988 c), "Single Hardening Constitutive Model for Frictional Materials III. Comparisons with Experimental Data", Computers and Geotechnics, 6(1), pp.30-47.
  11. Kim, Y. T., Han, W. J. and Jung, D. H (2007), "Development of Composite Geo-Material for Recycling Dredged Soil and Bottom Ash", Journal of the Korean Geotechnical Society, Vol.23, No.11, pp.77-85.
  12. Kondner, R. L. (1963), "Hyperbolic Stress-Strain Response: Cohesive Soils", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.89, No. SM1, pp.115-143.
  13. Lade. P. V. and Duncan, J. M. (1973), "Cubical Triaxial Tests on Cohesionless Soil", Journal of the Geotechnical Engineering Division, ASCE, Vol.99, No. SM10, pp.793-812.
  14. Lade. P. V. and Duncan, J. M.(1975), "Elastoplastic Stress-Strain Theory for Cohesionless Soil", Journal of the Geotechnical Engineering Division, ASCE, Vol.101, No. GT10, pp.1037-1053.
  15. Lade. P. V. (1978), "Prediction of Undrained Behaviour of Sand", Journal of the Geotechnical Engineering Division, ASCE, Vol.104, No.GT6, pp.721-735.
  16. Lee, B. S. and Jeong, K. S. (2001), "Liquefaction Potential for Coal Ash Mixed Sand by Strain-Controlled Cyclic Triaxial Test", Journal of the Korean Geotechnical Society, Vol.17, No.5, pp.129-136.
  17. Roscoe, K. H. & Burland, J. B. (1968), "On the Generalized Stress Strain Behaviour of Wet Clay". Engineering Plasticity, Cambridge University Press, Cambridge University, London, pp.535-609.
  18. Roscoe, K. H., Schofield, A. N., and Worth, C. P. (1958), "On the Yielding of soil". Geotechnique, London, England, Vol.8, No.1, pp.22-52. https://doi.org/10.1680/geot.1958.8.1.22
  19. Hong, W. P. and Nam, J. M (1994), "Prediction of Three-Dimensional Behavior of Sand by Isotropic Single-Hardening Constitutive Model" Journal of the Korean Geotechnical Society, Vol.10, No.1, pp.103-115.