DOI QR코드

DOI QR Code

Construction of cDNA Library and EST Analysis Related to Seed-hair Characteristics in Carrot

당근 종모 형질 관련 cDNA Library 작성 및 EST 분석

  • Oh, Gyu-Dong (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Shim, Eun-Jo (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Jun, Sang-Jin (Breeding Research Institute, Carrotop Seed Co.) ;
  • Park, Young-Doo (Department of Horticultural Biotechnology, Kyung Hee University)
  • 오규동 (경희대학교 원예생명공학과) ;
  • 심은조 (경희대학교 원예생명공학과) ;
  • 전상진 ((주)캐로톱씨드 육종연구소) ;
  • 박영두 (경희대학교 원예생명공학과)
  • Received : 2013.07.11
  • Accepted : 2013.07.31
  • Published : 2013.12.31

Abstract

Carrot (Daucus carota L. var. sativa) is one of the most widely used crops in the world and is nutritionally important crop. However, seed-hair which is generated in epidermal cell of seeds causes the difficulty of the seedling process, because of the seed germination and absorption inhibitions. For these reasons, carrot seeds are commercialized after mechanical hair removal process. However, in this process, various damage and seed loss occur and breeding of hairless-seed carrot cultivar is needed to overcome these various weaknesses and additional seed production costs. In this study, cDNA libraries using 2 combinations, which were composed of short-hair seed CT-ATR 615 OP 666-13 & long-hair seed CT-ATR 615 OP 671-9, and short-hair seed CT-SMR 616 OP 659-1 & long-hair seed CT-SMR 616 OP 677-14, were constructed and EST sequences of each individuals were analyzed to reveal carrot seed-hair characteristics. Firstly, analyzed EST sequences were classified into FunCat functional categories. As a result, significant differences have been identified in metabolism category, protein folding and stabilization, protein binding, C-compound binding category from both of two combinations. Secondly, several candidate EST sequences related to seed trichome differentiation and cellulose biosynthetic process were selected based on GO data of EST sequences. These differences based on FunCat categories and candidate EST obtained by GO data analysis are thought to be involved in the formation of carrot seed hair. Finally, 741 SSR sites and 33 SNP sites were identified from analyzed EST sequences of two combinations. Then we designed SNP and SSR primer sets to develop molecular markers. These molecular markers will be used for classification of carrot cultivars and study seed-hair characteristic.

당근(Daucus carota L. var. sativa)은 세계적으로 널리 이용되는 작물 중 이며, 영양학적으로도 중요한 작물이다. 하지만, 종자 표피세포에서 생성되는 종자모는 발아를 억제하고 흡수를 저해하여 육묘에 어려움을 야기한다. 이러한 어려움을 타파하기 위해 당근 종자는 기계적인 제모작업을 거쳐 상품화 되고 있다. 이 과정에서 생산상의 여러 가지 단점들이 발생하며, 이를 보완하기 위해 단모종자 당근 품종의 육종이 필요하다. 따라서 본 연구는 단모종자 표현형 CT-ATR 615 OP 666-13개체와 장모종자 표현형 CT-ATR 615 OP 671-9개체 및 단모종자 표현형 CT-SMR 616 OP 659-1 개체와 장모종자 표현형 CT-SMR 616 OP 677-14개체 등 두 조합의 종자 cDNA library를 작성 후 EST 염기서열의 비교분석을 통해 당근 종자모 형질관련 연구에 이용하고자 하였다. 첫째로 EST 염기서열의 BlastX 결과를 바탕으로 각각의 EST를 FunCat 기능별 category로 분류하였다. 그 결과 Metabolism category와 protein folding 및 stabilization, protein binding, C-compound binding category에서 2조합 모두 동일한 유의적인 차이를 확인하였다. 두 번째로 EST 염기서열의 GO data를 바탕으로 seed trichome differentiation 및 cellulose biosynthetic process에 관련된 EST를 선발하였다. 이러한 FunCat category에서의 차이점과 GO data 분석을 통해 확인된 후보 EST 들이 당근 종자모 형성에 많은 영향을 미치는 것으로 생각된다. 마지막으로 분석된 개체 별 EST 염기서열을 바탕으로 33개의 SNP site, 741개의 SSR site를 확인하였다. 확인된 SNP 및 SSR site는 당근 종자모 형성에 관련된 분자마커 개발에 이용할 수 있음은 물론 당근의 여러 형질에 대한 연구에 활용 가능할 것으로 기대된다.

Keywords

References

  1. Adams, M.D., J.M. Kelley, J.D. Gocayne, M. Dubnick, M.H. Polymeropoulos, H. Xiao, C.R. Merril, A. Wu, B. Olbe, R.F. Moreno, A.R. Kerlavage, W.R. McCombie, and J.C. Venter. 1991. Complementary DNA sequencing: Expressed sequence tags and human genome project. Science 252:1651-1656. https://doi.org/10.1126/science.2047873
  2. Ashburner, M., C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, and G. Sherlock. 2000. Gene ontology: Tool for the unification of biology. Nature Genet. 25:25-29. https://doi.org/10.1038/75556
  3. Ayeh, K.O. 2008. Expressed sequence tags (ESTs) and single nucleotide polymorphisms (SNPs): Emerging molecular marker tools for improving agronomic traits in plant biotechnology. African J. Biotechnol. 7:331-341.
  4. Gou, J.Y., L.J. Wang, S.P. Chen, W.L. Hu, and X.Y. Chen. 2007. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res. 17:422-434.
  5. Gupta, P.K., S. Rustgi, S. Sharma, R. Singh, N. Kumar, and H.S. Balyan. 2003. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol. Gen. Genomics 270:315-323. https://doi.org/10.1007/s00438-003-0921-4
  6. Hwang, E.M., G.D. Oh, E.J. Shim, S.J. Jeon, and Y.D. Park, 2010. Analysis of seed hair formation related genes by EST profiling in carrot (Daucus carota var. sativa). Kor. J. Hort. Sci. Technol. 28:1039-1050.
  7. Kantety, R.V., M. La Rota, D.E. Mattews, and M.E. Sorrells. 2002. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol. Biol. 48:501-510. https://doi.org/10.1023/A:1014875206165
  8. Menon, A.R.S. and Y. Dave. 1989. Micromorphology of hairs and spines on ovary and fruit of Daucus carota L. var. sativa. Bot. Mag. Tokyo 102:503-509. https://doi.org/10.1007/BF02488432
  9. Mewes, H.W., C. Amid, R. Arnold, D. Frishman, U. Guldener, G. Mannhaupt, M. Munsterkotter, P. Pagel, N. Strack, V. Stumpflen, J. Warfsmann, and A. Ruepp. 2004. MIPS: Analysis and annotation of proteins from whole genomes. Nucleic Acids Res. 32:D41-D44. https://doi.org/10.1093/nar/gkh092
  10. Myakishev, M.V., Y. Khripin, S. Hu, and D.H. Hamer. 2001. High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res. 11:163-169. https://doi.org/10.1101/gr.157901
  11. Oh, G.D., E.J. Shim, S.J. Jun, and Y.D. Park. 2013. Development of SNP molecular markers related to seed-hair characteristic based on EST sequences in carrot. Kor. J. Hort. Sci. Technol. 31:80-88. https://doi.org/10.7235/hort.2013.12187
  12. Oh, G.D., E.M. Hwang, E.J. Shim, S.J. Jeon, and Y.D. Park. 2010. EST profiling for seed-hair characteristic and development of EST-SSR and SNP markers in carrot. Kor. J. Hort. Sci. Technol. 28:1025-1038.
  13. Powell, W., G.C. Machray, and J. Provan. 1996. Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1:215-222. https://doi.org/10.1016/1360-1385(96)86898-1
  14. Ruepp, A., A. Zollner, D. Maier, K. Albermann, J. Hani, M. Molrejs, I. Tetko, U. Guldener, G. Mannhaupt, M. Munsterkotter, and H.W. Mewes. 2004. The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res. 32:5539-5545. https://doi.org/10.1093/nar/gkh894
  15. Somers, D.J., R. Kirkpatrick, M. Moniwa, and A. Walsh. 2003. Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 46:431-437. https://doi.org/10.1139/g03-027
  16. Varshney, R.K., R. Sigmund, A. Borner, V. Korzun, N. Stein, M.E. Scorrells, P. Langridge, and A. Graner. 2005. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci. 168:195-202. https://doi.org/10.1016/j.plantsci.2004.08.001
  17. Wang, Y.C., C.P. Yang, G.F. Liu, J. Jiang, and J.H. Wu. 2006. Generation and analysis of expressed sequence tags from a cDNA library of Tamarix androssowii. Plant Sci. 170:28-36. https://doi.org/10.1016/j.plantsci.2005.07.027
  18. Wang, Z., J.L. Weber, G. Zhong, and S.D. Tanksley. 1994. Survey of plant short tandem DNA repeats. Theor. Appl. Genet. 88:1-6.
  19. Ye, S., S. Dhillon, X. Ke, A.R. Collins, and I.N.M. Day. 2001. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res. 29:e88. https://doi.org/10.1093/nar/29.17.e88
  20. Yu, J.K., M. La Rota, R.V. Kantety, and M.E. Sorrells. 2004. EST derived SSR markers for comparative mapping in wheat and rice. Mol. Gen. Genomics 271:742-751.

Cited by

  1. CarrotDB: a genomic and transcriptomic database for carrot vol.2014, pp.0, 2014, https://doi.org/10.1093/database/bau096