Injury and inflammation detection by the application of microcurrent through the skin

  • Received : 2013.04.02
  • Accepted : 2013.06.12
  • Published : 2014.01.26

Abstract

Objective: To determine the efficacy and reliability of measuring direct current microcurrent applied through the skin to determine injury in the underlying tissues. Design: Case control study. Methods: First, microcurrent was measured as decreased blood flow induced hypoxia in healthy subjects. Next, reliability was assessed by measuring over ten days with set variations in pressure and distance between the electrodes. Finally, measurements over sprained ankle were compared to measurements over comparable uninjured areas on the same injured subject. Results: For the blood flow test phase, microcurrent significantly decreased an average of 17% after 5 minutes (p<0.05), remained decreased for 30 seconds, and returned to non-occlusive levels after 2 minutes of normal circulation. The results indicate that the microcurrent decrease was not due to blood flow, and most likely from hypoxic cellular damage. For the reliability phase, the coefficients of variation averaged 10.3% for the shoulder, 14.8% for the low back, and 29.1% for the knee. Changing distance 2.5 cm between the electrodes resulted in insignificant changes. Changes in pressure had some significant effect after an increase in force of 2.6 N, affirming the need for consistent pressure for measurement. For the injury test phase, a significant 69% decrease occurred comparing injured areas to the same area on the uninjured side, and a significant 74% occurred comparing injured and non-injured areas on the same limb. Conclusions: Microcurrent through the skin shows promise as an objective method of assessing a soft tissue injury by detecting damage likely due to hypoxia.

Keywords