DOI QR코드

DOI QR Code

Optimal Condition for Torrefaction of Eucalyptus by Response Surface Methodology

반응표면분석법을 이용한 유칼립투스의 반탄화 최적조건 탐색

  • Kim, Young-Hun (Department of Forest Products and Technology, Chonnam National University) ;
  • Na, Byeong-Il (Department of Forest Products and Technology, Chonnam National University) ;
  • Lee, Soo-Min (Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute) ;
  • Lee, Hyoung-Woo (Department of Forest Products and Technology, Chonnam National University) ;
  • Lee, Jae-Won (Department of Forest Products and Technology, Chonnam National University)
  • 김영훈 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 나병일 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 이수민 (국립산림과학원 임산공학부 화학미생물과) ;
  • 이형우 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 이재원 (전남대학교 농업생명과학대학 산림자원학부)
  • Received : 2013.03.28
  • Accepted : 2013.10.23
  • Published : 2013.11.25

Abstract

The optimal condition for the torrefaction of eucalyptus (Eucalyptus globulus) was investigated by response surface methodology. The carbon content in the torrefied biomass increased with the severity factor (SF), while hydrogen and oxygen contents decreased. The calorific value of torrefied biomass ranged from 20.23 to 21.29 MJ/kg, depending on the torrefaction conditions. This implied that the energy contained in the torrefied biomass increased by 1.6 to 6.9%, when compared with that of the untreated biomass. The weight loss of biomass increased as the SF increased. The Code level of reaction temperature had the highest impact on the energy yield of torrefied biomass, while the effect of Code level of reaction time was considerably low. The highest energy yield was obtained at low SF.

유칼립투스(Eucalyptus globulus)의 반탄화 최적조건을 탐색하기 위하여 반응표면분석법을 이용하였다. 반탄화 바이오매스의 탄소함량은 반탄화 정도를 나타내는 severity factor (SF)에 따라 증가하였으며 바이오매스에 포함된 수소와 산소의 함량은 감소하였다. 반탄화 바이오매스의 발열량은 조건에 따라 20.23~21.29 MJ/kg을 나타냈으며 처리 전 바이오매스와 비교하여 1.6~6.9% 에너지함량이 증가한 것으로 나타났다. 바이오매스의 중량감소율은 SF 증가에 따라 증가하였다. 에너지수율에서 반탄화 온도는 중요한 인자로 작용하였으며 상대적으로 반응시간에 대한 영향은 낮았다. 최대 에너지수율은 낮은 SF에서 반탄화를 수행하였을 때 얻을 수 있었다.

Keywords

References

  1. 황병호. 1998.0 목질바이오매스. 선진문화사. pp. 11-12.
  2. Pimchuai, A., A. Dutta, and P. Basu. 2010. Torrefaction of Agriculture Residue To Enhance Combustible Properties. Energy & Fuels 24(9): 4638-4645. https://doi.org/10.1021/ef901168f
  3. Jenkins, B. M., L. L. Baxter, T. R. Miles, and T. R. Miles. 1998. Combustion properties of biomass. Fuel Processing Technology 54: 17-46. https://doi.org/10.1016/S0378-3820(97)00059-3
  4. Auro, C. A., J. L. Joe, J. S. Peter, S. A. Marcelo, F. Sebastiao, M. B. Simone, and L. B. Fernando. Needs and opportunities for using a processbased productivity model as a practical tool in Eucalyptus plantations Original Research Article. Forest Ecology and Management. Volume 193. Issues 1-2. 17 May 2004. pp. 167-177. https://doi.org/10.1016/j.foreco.2004.01.044
  5. Simes, H. C., C. C. Hassler, and T. H. Bean. 1988. Wood densification, West Virginia Uni. Extension Service. Publication No. 838.
  6. Bourgeois, J., M. C. Bartholin, and R. Guyonnet. 1989. Thermal treatment of wood; analysis of the obtained product. Wood Science and Technology 23(4): 303-310.
  7. Lu, K. M., W. J. Lee, W. H. Chen, S. H. Liu, and T. C. Lin. 2012. Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresource Technology 123: 98-105. https://doi.org/10.1016/j.biortech.2012.07.096
  8. Lee, J. W., Y. H. Kim, S. M. Lee, and H. W. Lee. 2012. Optimizing the torrefaction of mixed softwood by response surface methodology for biomass upgrading to high energy density. Bioresource Technology 116: 471-476. https://doi.org/10.1016/j.biortech.2012.03.122
  9. Jaap, K. and V. V. L. Sjaak. 2008. The Handbook of biomass combustion and co-firing. Earthscan Publications Ltd.
  10. Shang, L., J. Ahrenfeldt, J. K. Holm, A. R. Sanadi, S. Barsberg, and T. Thomsen. 2012. Changes of chemical and mechanical behavior of torrefied wheat straw. Biomass Bioenergy 40: 63-70. https://doi.org/10.1016/j.biombioe.2012.01.049
  11. Phanphanich, M. and S. Mani. 2011. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresource Technology. 102(2): 1246-1253. https://doi.org/10.1016/j.biortech.2010.08.028
  12. Prins, M. J., K. J. Ptasinski, and F. J. J. G. Janssen. 2006. Torrefaction of wood: Part 1. Weight loss kinetics. Journal of Analytical and Applied Pyrolysis 77(1): 28-34. https://doi.org/10.1016/j.jaap.2006.01.002
  13. Prins, M. J., K. J. Ptasinski, and F. J. J. G. Janssen. 2006. Torrefaction of wood: Part 2. Analysis of products. Journal of Analytical and Applied Pyrolysis 77(1): 35-40. https://doi.org/10.1016/j.jaap.2006.01.001
  14. Unsal, O., Z. Candan, U. Buyuksari, S. Korkut, Y. S. Chang, and H. M. Yeo. 2011. Effect of Thermal Compression Treatment on the Surface Hardness, Vertical Density Propile and Thickness Swelling of Eucalyptus Wood Boards by Hot-pressing. Mokchae Konghak 39(2): 148-166. https://doi.org/10.5658/WOOD.2011.39.2.148
  15. Bergman, P. C. A., A. R. Boersma, R. W. R. Zwart, and J. H. A. Kiel. 2005. Torrefaction for biomass co-firing in existing coal-fired power stations. Energy research Centre of the Netherlands.
  16. Ibrahim, R. H. H., L. I. Darvell, J. M. Jones, and A. Williams. 2012. Physicochemical characterisation of torrefied biomass. Journal of Analytical and Applied Pyrolysis.
  17. Lloyd, T. A. and C. E. Wyman. 2005. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technology 96(18): 1967-1977. https://doi.org/10.1016/j.biortech.2005.01.011
  18. TAPPI test method. 1992. TAPPI Press. Atlanta. UAS.
  19. Repellin, V., A. Govin, M. Rolland, and R. Guyonnet. 2010. Modelling anhydrous weight loss of wood chips during torrefaction in a pilot kiln. Biomass Bioenergy 34: 602-609. https://doi.org/10.1016/j.biombioe.2010.01.002
  20. Chen, W. H. and P. C. Kuo. 2011. Torrefaction and co-torrefaction characterization of hemicelluloses, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 36: 803-811. https://doi.org/10.1016/j.energy.2010.12.036
  21. Son, Y. M., H. Kim, H. Y. Lee, C. M. Kim, C. S. Kim, J. W. Kim, R. W. Joo, and K. H. Lee. 2010. Stand Yield and Commercial Timber Volume of Eucalyptus Pellita and Acacia Mangium plantions in Indonesia. Journal of Korean Forest Society 99(1): 9-15.
  22. Lee, Y. K., D. K. Lee, S. Y. Woo, P. S. Park, Y. H. Jang, and E. R. G. Abraham. 2006. Effect of Acacia plantations on net photosynthesis, tree species composition, soil enzyme activities, and microclimate on Mt. Makiling. Photosynthetica 44(2): 299-308. https://doi.org/10.1007/s11099-006-0022-9

Cited by

  1. Optimization of biomass torrefaction conditions by the Gain and Loss method and regression model analysis vol.172, 2014, https://doi.org/10.1016/j.biortech.2014.09.016
  2. Optimization of torrefaction conditions of coffee industry residues using desirability function approach vol.73, 2018, https://doi.org/10.1016/j.wasman.2017.04.012
  3. A Study on Fuel Characteristics of Mixtures Using Torrefied Wood Powder and Waste Activated Carbon vol.43, pp.1, 2015, https://doi.org/10.5658/WOOD.2015.43.1.135
  4. Optimization of The Organosolv Pretreatment of Yellow Poplar for Bioethanol Production by Response Surface Methodology vol.43, pp.5, 2015, https://doi.org/10.5658/WOOD.2015.43.5.600