DOI QR코드

DOI QR Code

Eigen-Analysis Based Super-Resolution Time Delay Estimation Algorithms for Spread Spectrum Signals

대역 확산 신호를 위한 고유치 해석 기반의 초 분해능 지연 시간 추정 알고리즘

  • 박형래 (한국항공대학교 정보통신공학과 이동통신연구실) ;
  • 신준호 (LG CNS 임베디드 기술 그룹)
  • Received : 2013.07.30
  • Accepted : 2013.11.12
  • Published : 2013.12.31

Abstract

In this paper the super-resolution time delay estimation algorithms based on eigen-analysis are developed for spread spectrum signals along with their comparative performance analysis. First, we shall develop super-resolution time delay estimation algorithms using the representative eigen-analysis based AOA (angle-of-arrival) estimation algorithms such as MUSIC, Minimum-Norm, and ESPRIT, and apply them to the ISO/IEC 24730-2.1 real-time locating system (RTLS) employing a direct sequence spread spectrum (DS-SS) technique to compare their performances in RTLS environments. Simulation results illustrate that all the three algorithms can resolve multipath signals whose delay differences are even smaller than the Rayleigh resolution limit. Simulation results also show that MUSIC and Minimum-Norm provide a similar performance while ESPRIT is inferior to both algorithms in RTLS environments.

본 논문에서는 대역 확산 신호를 위한 고유치 해석 기반의 초 분해능 지연 시간 추정(super-resolution time delay estimation) 알고리즘을 개발하고 각 알고리즘의 성능을 비교, 분석한다. 먼저, 고유치 해석 기반의 대표적인 도래각 추정 알고리즘인 MUSIC, ESPRIT, Minimum-Norm을 이용하여 초 분해능 지연 시간 추정 알고리즘을 개발하고 직접 대역확산 방식의 ISO/IEC 24730-2.1 실시간 위치 추적 시스템 (real-time locating system: RTLS)에 적용하여 RTLS 환경에서 각 알고리즘의 성능을 시뮬레이션을 통해 비교, 분석한다. 시뮬레이션 결과로부터 세 알고리즘 모두 레일리이 분해능 한계 이내로 수신되는 다중 신호의 지연 시간을 모두 분리, 추정함을 알 수 있었다. 그러나, RTLS 환경에서는 MUSIC과 Minimum-Norm의 성능은 서로 비슷하나 ESPRIT은 두 알고리즘에 비해 성능이 현격히 저하됨을 알 수 있다.

Keywords

References

  1. ISO/IEC, Information Theory - Real Time Locating System (RTLS), ISO/IEC 24730-2, 2006.
  2. R. O. Schmidt, "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propagat., vol. AP-34, no. 3, pp. 276-280, Mar. 1986.
  3. R. Kumaresan and D. W. Tufts, "Estimating the angles of arrival of multiple plane waves," IEEE Trans. AES, vol. AES-19, no. 1, pp. 134-139, Jan. 1983.
  4. R. Roy and T. Kailath, "ESPRIT-Estimation of signal parameters via rotational invariance techniques," IEEE Trans. ASSP, vol. 37, no. 7, pp. 984-995, July 1989.
  5. Z. Hou and Z. Wu, "A new method for high resolution estimation of time delay," in Proc. ICASSP, pp. 420-423, Paris, France, May 1982.
  6. A. M. Bruckstein, T. J. Shan, and T. Kailath, "The resolution of overlapping echoes," IEEE Trans. ASSP, vol. ASSP-33, no. 6, pp. 1357-1367, June 1985.
  7. J. H. Shin, S. I. Myong, E. Y. Chang, and H. R. Park, "A super-resolution time delay estimation algorithm for spread spectrum signals," J. KICS, vol. 37A, no. 2, pp. 119-127, Feb. 2012. https://doi.org/10.7840/KICS.2012.37A.2.119
  8. J. H. Shin, H. R. Park, and E. Y. Chang, "An ESPRIT-based super-resolution time delay estimation algorithm for real-time locating systems," J. KICS, vol. 38A, no. 4, pp. 310-317, Apr. 2013. https://doi.org/10.7840/kics.2013.38A.4.310
  9. M. A. Pallas and G. Jourdain, "Active high resolution time delay estimation for large BT signals," IEEE Trans. Signal Process., vol. 39, no. 4, pp. 781-788, Apr. 1991. https://doi.org/10.1109/78.80899
  10. F. X. Ge, D. Shen, Y. Peng, and V. O. K. Li, "Super-resolution time delay estimation in multipath environments," IEEE Trans. Circuits Syst., vol. 54, no. 9, pp. 1977-1986, Sep. 2007. https://doi.org/10.1109/TCSI.2007.904693
  11. T. J. Shan, M. Wax, and T. Kailath, "On spatial smoothing for direction-of- arrival estimation of coherent signals," IEEE Trans. ASSP, vol. 33, no. 8, pp. 806-811, Aug. 1985. https://doi.org/10.1109/TASSP.1985.1164649
  12. R. T. Williams, S. Prasad, A. K. Mahalanabis, and L. H. Sibul, "An improved spatial smoothing technique for bearing estimation in a multipath environment," IEEE Trans. ASSP, vol. 36, no. 4, pp. 425-432, Apr. 1988. https://doi.org/10.1109/29.1546