DOI QR코드

DOI QR Code

Transplantation of Marrow Stromal Cells into the Developing Mammal Retina

발생 중인 포유류 망막으로 골수기질세포의 이식

  • Lee, Eun-Shil (Dept. of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Kwon, Oh-Ju (Dept. of Ophthalmic Optic, Busan College of Information Technology) ;
  • Ye, Eun-Ah (Neuroscience Program, Iowa State University) ;
  • Jeon, Chang-Jin (Dept. of Biology, College of Natural Sciences, Kyungpook National University)
  • 이은실 (경북대학교 자연과학대학 생물학과) ;
  • 권오주 (부산정보대학 보건웰빙학부 안경광학과) ;
  • 예은아 (신경과학프로그램, 아이오와 주립대학교) ;
  • 전창진 (경북대학교 자연과학대학 생물학과)
  • Received : 2013.10.31
  • Accepted : 2013.12.14
  • Published : 2013.12.31

Abstract

Purpose: Marrow stromal cells (MSCs) have been known for their potential to trans-differentiate into neural and glial cells in vitro and in vivo. To investigate the influence of the developing host environment on the survival and morphological and molecular differentiation, murine MSCs transplanted into the eye of Brazilian opossum (Monodelphis domestica). Methods: Enhanced green fluorescent protein (GFP) - expressing MSCs were transplanted into developing Brazilian opossums. Animals were allowed to survive for up to 4 weeks after transplantation, at which time the eyes were prepared for immunohistochemical analysis. Results: Some transplanted MSCs survived and showed morphological differentiation into neural cells with some processes within the host vitreous chamber. Some transplanted cells expressed class III ${\beta}$-tubulin (TuJ1, a marker for neuronal cells) or glial fibrillary acid protein (GFAP, a marker for glial cells) or Nestin (a marker for neural stem cells). In addition, some transplanted cells were located in ganglion cell layer but did not show morphological and molecular differentiation. Conclusions: Our result show that the most effective stage of development for transplantation into the retina was postnatal day 16, which retinas developmentally corresponded to postnatal day 4-5 days mouse retina based on cell differentiation and lamination patterns. The present findings suggest that the age of the host appears to play a key role in determining cell fate in vivo.

목적: 골수기질세포는 생체 내 외에서 신경세포와 신경교세포로 교차분화 할 수 있는 능력을 가지고 있는 것으로 밝혀져 있다. 발생 중인 숙주 환경에 따라 이식된 골수기질세포의 생존여부, 형태학적 그리고 분자적 분화영향을 조사하기 위해 브라질산 주머니쥐 안구에 마우스 골수기질세포를 이식하였다. 방법: GFP를 발현하는 골수기질세포를 발생 중인 브라질산 주머니쥐의 각 시기별로 이식하여, 이식 후 최대 4주까지 생존시킨 후 각 시기별로 면역조직화학법을 시행하였다. 결과: 이식한 골수기질세포의 일부는 숙주동물의 유리체 내에서 생존하며 일부 돌기를 내는 신경세포로 형태학적 분화가 됨을 관찰할 수 있었다. 또한 유리체에 존재하는 일부 세포는 신경세포 표지인자인 TuJ1(class III ${\beta}$-tubulin), 신경교세포 표지인자인 GFAP(glial fibrillary acidic protein), 또는 신경줄기세포 표지인자인 Nestin 단백질을 발현하였다. 게다가, 일부 골수기질세포는 신경절세포층으로 이동함을 관찰했으나, 이동한 세포들은 형태학적 또는 분자적 분화를 나타내지는 않았다. 결론: 이번 연구에서 가장 효율적인 이식시기는 생후 16일째의 포유류 망막으로, 이는 망막세포의 분화양상과 층분화 패턴으로 미뤄볼 때 생후 4~5일 정도의 마우스 망막과 발생학적으로 상동함을 알 수 있었다. 또한 이식 받은 숙주 망막의 미세환경이 이식된 세포운명에 영향을 미치는 것을 확인할 수 있었다.

Keywords

References

  1. Ramsden CM, Powner MB, Carr AJ, Smart MJ, da Cruz L, Coffey PJ. Stem cells in retinal regeneration: past, present and future. Development. 2013;140(12):2576-2585. https://doi.org/10.1242/dev.092270
  2. Wang NK, Tosi J, Kasanuki JM, Chou CL, Kong J, Parmalee N et al. Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation. 2010;89(8):911-919 https://doi.org/10.1097/TP.0b013e3181d45a61
  3. Streilein JW. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol. 2003;3(11):879-889. https://doi.org/10.1038/nri1224
  4. Klassen HJ, Ng TF, Kurimoto Y, Kirov I, Shatos M, Coffey P et al. Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Invest Ophthalmol Vis Sci. 2004;45(11):4167-4173. https://doi.org/10.1167/iovs.04-0511
  5. Stern JH, Temple S. Stem cells for retinal replacement therapy. Neurotherapeutics. 2011;8(4):736-743. https://doi.org/10.1007/s13311-011-0077-6
  6. Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2009;106(39):16698- 16703. https://doi.org/10.1073/pnas.0905245106
  7. Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV et al. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells. 2009;27(10):2427-2434. https://doi.org/10.1002/stem.189
  8. Nistor G, Seiler MJ, Yan F, Ferguson D, Keirstead HS. Three-dimensional early retinal progenitor 3D tissue constructs derived from human embryonic stem cells. J Neurosci Methods. 2010;190(1):63-70. https://doi.org/10.1016/j.jneumeth.2010.04.025
  9. Castanheira P, Torquetti L, Nehemy MB, Goes AM. Retinal incorporation and differentiation of mesenchymal stem cells intravitreally injected in the injured retina of rats. Arq Bras Oftalmol. 2008;71(5):644-650. https://doi.org/10.1590/S0004-27492008000500007
  10. Gong L, Wu Q, Song B, Lu B, Zhang Y. Differentiation of rat mesenchymal stem cells transplanted into the subretinal space of sodium iodate-injected rats. Clin Experiment Ophthalmol. 2008;36(7):666-671. https://doi.org/10.1111/j.1442-9071.2008.01857.x
  11. Arnhold S, Heiduschka P, Klein H, Absenger Y, Basnaoglu S, Kreppel F et al. Adenovirally transduced bone marrow stromal cells differentiate into pigment epithelial cells and induce rescue effects in RCS rats. Invest Ophthalmol Vis Sci. 2006;47(9):4121-4129. https://doi.org/10.1167/iovs.04-1501
  12. Tomita M, Adachi Y, Yamada H, Takahashi K, Kiuchi K, Oyaizu H et al. Bone marrow-derived stem cells can differentiate into retinal cells in injured rat retina. Stem Cells. 2002;20(4):279-283. https://doi.org/10.1634/stemcells.20-4-279
  13. MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M et al. Retinal repair by transplantation of photoreceptor precursors. Nature. 2006;444(7116): 203-207. https://doi.org/10.1038/nature05161
  14. Sakaguchi DS, Van Hoffelen SJ, Theusch E, Parker E, Orasky J, Harper MM et al. Transplantation of neural progenitor cells into the developing retina of the Brazilian opossum: an in vivo system for studying stem/progenitor cell plasticity. Dev Neurosci. 2004;26(5-6):336-345. https://doi.org/10.1159/000082275
  15. Van Hoffelen SJ, Young MJ, Shatos MA, Sakaguchi DS. Incorporation of murine brain progenitor cells into the developing mammalian retina. Invest Ophthalmol Vis Sci. 2003;44(1):426-434. https://doi.org/10.1167/iovs.02-0269
  16. Amato MA, Boy S, Perron M. Hedgehog signaling in vertebrate eye development: a growing puzzle. Cell Mol Life Sci. 2004;61(7-8):899-910. https://doi.org/10.1007/s00018-003-3370-7
  17. Esteve P, Bovolenta P. Secreted inducers in vertebrate eye development: more functions for old morphogens. Curr Opin Neurobiol. 2006;16(1):13-19. https://doi.org/10.1016/j.conb.2006.01.001
  18. Van Raay TJ, Vetter ML. Wnt/frizzled signaling during vertebrate retinal development. Dev Neurosci. 2004;26(5-6):352- 358. https://doi.org/10.1159/000082277
  19. VandeBerg JL, Robinson ES. The Laboratory Opossum (Monodelphis Domestica) in Laboratory Research. ILAR J. 1997;38(1):4-12. https://doi.org/10.1093/ilar.38.1.4
  20. Palmer TD, Takahashi J, Gage FH. The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci. 1997;8(6):389-404. https://doi.org/10.1006/mcne.1996.0595
  21. Sakaguchi DS, Van Hoffelen SJ, Young MJ. Differentiation and morphological integration of neural progenitor cells transplanted into the developing mammalian eye. Ann N Y Acad Sci. 2003;995:127-139. https://doi.org/10.1111/j.1749-6632.2003.tb03216.x
  22. Shatos MA, Mizumoto K, Mizumoto H, Kurimoto Y, Klassen H, Young MJ. Multipotent stem cells from the brain and retina of green mice. J Regen. Med. 2001;2(3): 13-15.
  23. Sakaguchi DS, Iqbal J, Sonea I, Jacobson CD. The gray short-tailed opossum: a novel model for mammalian development. Lab animal. 1995;24(6):24-29.
  24. Greenlee MH, Swanson JJ, Simon JJ, Elmquist JK, Jacobson CD, Sakaguchi DS. Postnatal development and the differential expression of presynaptic terminal-associated proteins in the developing retina of the Brazilian opossum, Monodelphis domestica. Brain Res Dev Brain Res. 1996;96(1-2):159-172. https://doi.org/10.1016/0165-3806(96)00102-2
  25. Greenlee MH, Roosevelt CB, Sakaguchi DS. Differential localization of SNARE complex proteins SNAP-25, syntaxin, and VAMP during development of the mammalian retina. J Comp Neurol. 2001;430(3):306-320. https://doi.org/10.1002/1096-9861(20010212)430:3<306::AID-CNE1032>3.0.CO;2-B
  26. Lee ES, Yu SH, Jang YJ, Hwang DY, Jeon CJ. Transplantation of bone marrow-derived mesenchymal stem cells into the developing mouse eye. Acta Histochem Cytochem. 2011;44(5):213-221. https://doi.org/10.1267/ahc.11009
  27. Yu SH, Jang YJ, Lee ES, Hwang DY, Jeon CJ. Transplantation of adipose derived stromal cells into the developing mouse eye. Acta Histochem Cytochem. 2010;43(6):123- 130. https://doi.org/10.1267/ahc.10015
  28. Fuhrmann S, Kirsch M, Hofmann HD. Ciliary neurotrophic factor promotes chick photoreceptor development in vitro. Development. 1995;121(8):2695-2706.
  29. Goureau O, Rhee KD, Yang XJ. Ciliary neurotrophic factor promotes muller glia differentiation from the postnatal retinal progenitor pool. Dev Neurosci. 2004;26(5-6):359- 370. https://doi.org/10.1159/000082278
  30. Kirsch M, Fuhrmann S, Wiese A, Hofmann HD. CNTF exerts opposite effects on in vitro development of rat and chick photoreceptors. Neuroreport. 1996;7(3):697-700. https://doi.org/10.1097/00001756-199602290-00004
  31. Xie HQ, Adler R. Green cone opsin and rhodopsin regulation by CNTF and staurosporine in cultured chick photoreceptors. Invest Ophthalmol Vis Sci. 2000;41(13):4317- 4323.
  32. Takahashi M, Palmer TD, Takahashi J, Gage FH. Widespread integration and survival of adult-derived neural progenitor cells in the developing optic retina. Mol Cell Neurosci. 1998;12(6):340-348. https://doi.org/10.1006/mcne.1998.0721
  33. Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D. Cell fate determination in the vertebrate retina. Proc Natl Acad Sci U S A. 1996;93(2):589-595. https://doi.org/10.1073/pnas.93.2.589
  34. Dorrell MI, Aguilar E, Weber C, Friedlander M. Global gene expression analysis of the developing postnatal mouse retina. Invest Ophthalmol Vis Sci. 2004;45(3): 1009-1019. https://doi.org/10.1167/iovs.03-0806
  35. Furukawa T, Mukherjee S, Bao ZZ, Morrow EM, Cepko CL. rax, Hes1, and notch1 promote the formation of Mller glia by postnatal retinal progenitor cells. Neuron. 2000;26(2):383-394. https://doi.org/10.1016/S0896-6273(00)81171-X
  36. Hatakeyama J, Kageyama R. Retinal cell fate determination and bHLH factors. Semin Cell Dev Biol. 2004;15(1):83- 89. https://doi.org/10.1016/j.semcdb.2003.09.005