DOI QR코드

DOI QR Code

Study on Sensitivity of different Standardization Methods to Climate Change Vulnerability Index

표준화 방법에 따른 기후변화 취약성 지수의 민감성 연구

  • Nam, Ki-Pyo (Department of Atmospheric Sciences, Pusan National University) ;
  • Kim, Cheol-Hee (Department of Atmospheric Sciences, Pusan National University)
  • 남기표 (부산대학교 대기환경과학과) ;
  • 김철희 (부산대학교 대기환경과학과)
  • Received : 2013.09.20
  • Accepted : 2013.11.07
  • Published : 2013.12.31

Abstract

IPCC showed that calculation of climate vulnerability index requires standardization process of various proxy variables for the estimation of climate exposure, sensitivity, and adaptive capacity. In this study, four different methodologies of standardization methods: Z-score, Rescaling, Ranking, and Distance to the reference country, are employed to evaluate climate vulnerability-VRI (Vulnerability-Resilience Indicator) over Korean peninsula, and the error ranges of VRI, arising from employing the different standardization are estimated. All of proxy variables are provided by CCGIS (Climate Change adaptation toolkit based on GIS) which hosts information on both past and current socio-economic data and climate and environmental IPCC SRES (A2, B1, A1B, A1T, A1FI, and A1 scenarios) climate data for the decades of 2000s, 2020s, 2050s, and 2100s. The results showed that Z-score and Rescaling methods showed statistically undistinguishable results with minor differences of spatial distribution, while Ranking and Distance to the reference country methods showed some possibility to lead the different ranking of VRI among South Korean provinces, depending on the local characteristics and reference province. The resultant VRIs calculated from different standardization methods showed Cronbach's alpha of more than 0.84, indicating that all of different methodologies were overall consistent. Similar horizontal distributions were shown with the same trends: VRI increases as province is close to the coastal region and/or it close toward lower latitude, and decreases as it is close to urbanization area. Other characteristics of the four different standardization are discussed in this study.

Keywords

References

  1. 고재경, 2009, 경기도 기후변화 취약성 평가 연구, 경기개발연구원.
  2. 고재경, 2011, 지방자치단체 기후변화 취약성 유형 및 적응방안 연구: 경기도 사례를 중심으로, 한국사회와 행정연구, 22(2).
  3. 국립환경과학원, 2009, GIS 및 WEB 기반 취약성 파악 및 분석기법 개발(I).
  4. 국립환경과학원, 2010, 기후 및 대기환경 통합 모델링 구축 및 운영(III).
  5. 국립환경과학원, 2012, 기후변화 부문별 취약성 지도(총괄.요약).
  6. 김선명, 김남의, 2012, 기후변화 취약성 평가에 관한 연구 -전남 22개 시.군을 중심으로-, 한국거버넌스학회보, 19, 99-123.
  7. 김연주, 전성우, 채여라, 최현아, 2010, 기후변화 취약성 지수분석을 통한 국가적응역량 제고 방안 모색, 한국환경정책 평가연구원.
  8. 김철희, 김은화, 송창근, 홍유덕, 유정아, 홍성철, 2011, 한반도 기후 변화 적응을 위한 취약성 지수 산정에 관한 고찰, 한국환경과학회지, 20(6), 789-798. https://doi.org/10.5322/JES.2011.20.6.789
  9. 유가영, 김인애, 2008, 기후변화 취약성 평가지표의 개발 및 도입방안, 한국환경정책.평가연구원.
  10. 유정아, 송창근, 이현주, 홍유덕, 2011, 전국 지자체 단위 기후변화 부문별 취약성평가 표준화 방법론 개발, 한국대기환경학회 2011년 추계학술대회 논문집, 154.
  11. 최현아, 이우균, 곽한빈, 최성호, 변재균, 유성진, 2009, 시.공간정보기반 기후변화 취약성 평가, 한국공간정보시스템학회 논문지, 11(3), 63-69.
  12. 환경부, 국가기후변화적응센터, 2010, 지자체 기후변화 영향평가 및 적응대책 수립.지원, 서울특별시 기후변화 영향평가 및 적응대책 세부시행계획 수립: 건강 및 재난분야.
  13. Brooks, N., W.N. Adger, and P.M. Kelly, 2005, The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation, Global Environmental Change, 15, 151-163. https://doi.org/10.1016/j.gloenvcha.2004.12.006
  14. Downing, T.E., M.J. Watts, and H.G. Bohle, 1996, Climate change and food insecurity: Toward a sociology and geography of vulnerability. In: Climate Change and World Food Security [Downing, T.E. (ed.)]. Springer-Verlag, Berlin, Germany, pp. 183-206.
  15. IPCC, 2007, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.
  16. Lonergan, S., K. Gustavson, and M. Harrower, 1999, Mapping human insecurity, in S.C. Lonergen (ed.), Environmental Change, Adaptation, and Security, Dordrecht, NATO/Kluwer, 397-413.
  17. Moss, R.H., A.L. Brenkert, and E.L. Malone, 2001, Vulnerability to Climate Change. A Quantitative Approach, Pacific Northwest National Laboratory operated by Batelle for the United States Department of Energy.
  18. Nardo, M., M. Saisana, A. Saltelli, and S. Taranta, 2005, Tools for Composite Indicators Building, European Commission Joint Resarch Centre, EUR 21682 EN.
  19. Nunnally, J. C., 1978, Psychometric Theory 2nd ed., McGraw-Hill.
  20. Stern, N., S. Peters, V. Bakhshi, A. Bowen, C. Cameron, S. Catovsky, D. Crane, S. Cruickshank, S. Dietz, N. Edmonson, S.-L. Garbett, L. Hamid, G. Hoffman, D. Ingram, B. Jones, N. Patmore, H. Radcliffe, R. Sathiyarajah, M. Stock, C. Taylor, T. Vernon, H. Wanjie, and D. Zenghelis, 2006, Stern Review: The Economics of Climate Change, HM Treasury, London.
  21. Wehhbe, M.B., R.A. Seiler, M.R. Vinocur, H. Eakin, C. Santos, and H.M. Civitaresi, 2005, Social methods for assessing agricultural producer's vulnerability to climate variability and change based on the notion of sustainability, Assessments of Impacts and Adaptations of Climate Change Working Papers.

Cited by

  1. Climate Change Vulnerability Assessment in Rural Areas - Case study in Seocheon - vol.20, pp.4, 2014, https://doi.org/10.7851/ksrp.2014.20.4.145
  2. Development of a Heavy Rain Damage Prediction Function by Risk Classification vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.503
  3. Vegetation response to changes in temperature, rainfall, and dust in arid environments vol.192, pp.11, 2013, https://doi.org/10.1007/s10661-020-08644-0
  4. 시·도별 사회재난 중점유형 선정에 관한 연구 vol.17, pp.2, 2013, https://doi.org/10.15683/kosdi.2021.6.30.206