DOI QR코드

DOI QR Code

국내산 계면활성제를 이용한 오일회수증진용 알칼리-계면활성제-폴리머용액의 제조 및 특성평가

Preparation and Characterization of Domestic Alkali-Surfactant-Polymer Solution for Enhanced Oil Recovery

  • 이상헌 (충남대학교 바이오응용화학과) ;
  • 김상겸 (충남대학교 녹색에너지기술전문대학원) ;
  • 박지윤 (충남대학교 바이오응용화학과) ;
  • 이도균 (충남대학교 바이오응용화학과) ;
  • 황순철 (충남대학교 녹색에너지기술전문대학원) ;
  • 배위섭 (세종대학교 에너지자원공학과) ;
  • 김인원 (건국대학교 화학공학과) ;
  • 이영우 (충남대학교 녹색에너지기술전문대학원)
  • Lee, Sang Heon (Department of Applied Chemistry and Biological Engineering, Chungnam National) ;
  • Kim, Sang Kyum (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Park, Ji Yun (Department of Applied Chemistry and Biological Engineering, Chungnam National) ;
  • Lee, Do Kyun (Department of Applied Chemistry and Biological Engineering, Chungnam National) ;
  • Hwang, Soon Choel (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Bae, Wisup (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Kim, In Won (Department of Applied Chemical Engineering, Konkuk University) ;
  • Rhee, Young Woo (Graduate School of Green Energy Technology, Chungnam National University)
  • 투고 : 2013.09.17
  • 심사 : 2013.10.23
  • 발행 : 2013.12.31

초록

국내산 계면활성제를 이용하여 오일회수증진용 알칼리-계면활성제-폴리머(alkali-surfactant-polymer, ASP)용액을 제조하였다. 계면활성제는 현재 애경에서 사용되고 판매되어지는 리니어알킬벤젠술폰산(linear alkylbenzene sulfonic acid, LAS)과 디옥틸설포석신나트륨(dioctyl sulfosiuccinate, DOSS)을 사용하였으며 LAS와 DOSS를 1:1, 2:1의 비율로 섞어 합성계면활성제를 제조하였다. 염도는 0.8 wt.%에서 3.6 wt.%까지 변화시킨 뒤 계면활성제 용액과 오일모사로 쓰인 데칸(decane)을 섞어서 마이크로에멀젼 형성을 알아보았다. 염도가 변하면서 마이크로에멀젼 층은 증류수에서 오일로 이동하였으며 최적의 염도일 때 가용화 값을 측정하였다. 또한 표면장력 측정기를 이용하여 표면장력을 측정하였으며 Huh 방정식을 이용하여 계면장력을 측정하였다. 이후에 각각의 계면활성제 비율에 대한 마이크로에멀젼의 특성을 비교하였다.

Alkali-surfactant-polymer (ASP) solution was manufactured by using the domestic surfactants for enhanced oil recovery. Domestic surfactants such as linear alkylbenzene sulfonic acid (LAS) and dioctyl sulfosiuccinate (DOSS) were used. This surfactants were purchased from AK chemtech Co., Ltd. (Korea). LAS and DOSS were blended and the ratio of LAS to DOSS are 1:1 and 2:1. Decane was used as a model compound of the crude oil. Surfactant solution and decane were blended to analyze microemulsion. Brine-oil-surfactant are mixed at varying concentration of brine from 0.8 to 3.6 wt.%. Increasing salinity causes the phase transition of microemulsion from water to middle to oil. Also, by measuring the surface tension and interfacial tension using pendent drop tensiometer and Huh's equation optimal ratio of the ASP solution was determined.

키워드

참고문헌

  1. Adeyemi, O. I., and Hunt, L. C., "Modeling OECD Industrial Energy Demand: Asymmetric Price Responses and Energysaving Technical Change," Energy Econ., 29(4), 693-709 (2007). https://doi.org/10.1016/j.eneco.2007.01.007
  2. Dimitropoulos, J., Hunt, L. C., and Judge, G., "Estimating Underlying Energy Demand Trends Using UK Annual Data," Appl. Econ. Lett., 12(4), 239-244 (2005). https://doi.org/10.1080/1350485052000337789
  3. Lee, C. C., and Lee, J. D., "Energy Prices, Multiple Structural Breaks, and Efficient Market Hypothesis," Appl. Energy, 86(4), 466-479 (2009). https://doi.org/10.1016/j.apenergy.2008.10.006
  4. Sen, R., "Biotechnology in Petroleum Recovery: the Microbial EOR," Prog. Energy Comb. Sci., 34(6), 714-724 (2008). https://doi.org/10.1016/j.pecs.2008.05.001
  5. Lazar, I., Petrisor, I., and Yen, T., "Microbial Enhanced Oil Recovery (MEOR)," Pet. Sci. Technol., 25(11), 1353-1366 (2007). https://doi.org/10.1080/10916460701287714
  6. Liang, L., Lang, Z. X., and Li, X. S., "Mechanistic Simulation Studies on the Steam-foam Drive in Superviscous Oil Reservoirs," J. Pet. Sci. Technol., 41(1), 199-212 (2004). https://doi.org/10.1016/S0920-4105(03)00154-2
  7. Lei, T., Li, Z., and Bi, Y., "Multi-combination Exploiting Technique of Ultra-heavy Oil Reservoirs with Deep and Thin Layers in Shengli Oilfield," Pet. Exp. Dev., 37(6), 732-736 (2010). https://doi.org/10.1016/S1876-3804(11)60007-4
  8. Guan, W., Xi, C., and Chen, Y., "Fireflooding Technologies in Post-steam-injected Heavy Oil Reservoirs," Pet. Exp. Dev., 38(4), 452-462 (2011). https://doi.org/10.1016/S1876-3804(11)60047-5
  9. Knauss, K. G., Johnson, J. W., and Steefel, C. I., "Evaluation of the Impact of $CO_2$, Co-contaminant Gas, Aqueous Fluid and Reservoir Rock Interactions on the Geologic Sequestration of $CO_2$," Chem. Geol., 217(3), 339-350 (2005). https://doi.org/10.1016/j.chemgeo.2004.12.017
  10. Okazawa, T., "Impacts of Concentration Dependence of Diffusion Coefficient on VAPEX Drainage Rates," J. Can. Pet. Tech., 48(2), 47-53 (2007).
  11. Zhu, Y. Y., Jian, G. Q., Wang, Z., Lei, M., and Hou, Q. F., "Development Progress of Surfactants for Chemical Combination Flooding," Adv. Mater. Res., 524-527, 1673-1680 (2012). https://doi.org/10.4028/www.scientific.net/AMR.524-527.1673
  12. Touhami, Y., Rana, D., Hornof, V., and Neale, G. H., "Effects of Added Surfactant on the Dynamic Interfacial Tension Behavior of Acidic Oil/Alkaline Systems," J. Colloid Interf. Sci., 239(1), 226-229 (2001). https://doi.org/10.1006/jcis.2001.7547
  13. Lu, Z., Lan, L., Sui, Z., and Yu, J. Y., "Effect of Acidic Components on the Dynamic Interfacial Tensions in Surfactant/ Alkali/Acidic Crude Oil Systems," J. Disper. Sci. Technol., 22(1), 41-55 (2001). https://doi.org/10.1081/DIS-100102679
  14. Zhu, Y., Zhang, Y., and Niu, J., "The Research Progress in the Alkali-free Surfactant-polymer Combination Flooding Technique," Pet. Exp. Dev., 39(3), 346-351 (2012).
  15. Li, S., Zhu, Y., and Zhao, Y., "Evaluation of Pilot Results of Alkali-surfactant-polymer Flooding in Daqing Oilfield," Acta Pet. Sin., 26(3), 56-59 (2005). https://doi.org/10.1111/j.1745-7254.2005.00019.x
  16. Cao, X., Zhang, J., and Zhang, A., "Development and Application of Dilute Surfactant-polymer Flooding System for Shengli Oilfield," J. Pet. Sci. Tech., 65(1), 45-50 (2009). https://doi.org/10.1016/j.petrol.2008.12.021
  17. Lu, Z., Lan, L., Sui, Z., and Yu, J. Y., "Effect of Acidic Components on the Dynamic Interfacial Tensions in Surfactant/ Alkali/Acidic Crude Oil Systems," J. Disper. Sci. Technol., 22(1), 41-55 (2001). https://doi.org/10.1081/DIS-100102679
  18. Huh, C., "Interfacial Tensions and Solubilizing Ability of a Microemulsion Phase that Coexists with Oil and Brine," J. Colloid Interf. Sci., 71(2), 408-426 (1979). https://doi.org/10.1016/0021-9797(79)90249-2
  19. Skauge, A., and Palmgren, O., "Phase Behavior and Solution Properties of Ethoxylated Anionic Surfactants," SPE International Symposium, Feb. 8, Houston, TX, (1989).
  20. Healy, R. N., Reed, R. L., and Carpenter, C. W., "A Labora tory Study of Microemulsion Flooding," Soc. Pet. Eng. J., 15(1), 87-100 (1975). https://doi.org/10.2118/4752-PA
  21. Levitt, D. B., Jackson, A. C., Heinson, C., Britton, L. N., Malik, T., and Dwarakanath, A. V., "Identification and Evaluation of High-Performance EOR Surfactants," SPE/DOE Symposium, Apr. 22-26, Tulsa, OK, (2006).
  22. Windor, P. A., Solvent Properties of Amphiphilic Compounds, 1st ed., Butterworth, London, 1954.
  23. Hoff, E., Nystrom, B., and Lindman, B., "Polymer-surfactant Interactions in Dilute Mixtures of a Nonionic Cellulose Derivative and an Anionic Surfactant," Langmuir, 17(1), 28-34 (2001). https://doi.org/10.1021/la001175p
  24. Knickerbocker, B. M., "Pattern of Three-liquid Phase Behavior Illustrated by Alcohol-hydrocarbon-water-salt Mixtures," J. Phys. Chem., 86(3), 393-400 (1982). https://doi.org/10.1021/j100392a022
  25. Dravis, H. T., and Scriven, L. E., "The Origins of Low Interfacial Tension for Enhanced Oil Recovery," SPE Annual Technical Conference and Exhibition, Sep. 21-24, Dallas, TX (1980).
  26. Holmberg, C., Nilsson, S., Singh, S. K., and Sundelof, L. O., "Hydrodynamic and Thermodynamic Aspects of the SDSEHEC- water System," J. Phys. Chem., 96(2), 871-880 (1992). https://doi.org/10.1021/j100181a064
  27. Hill, H. J., Reissberg, J., and Stegemeier, G. L., "Aqueous Surfactant Systems for Oil Recovery," J. Pet. Technol., 25(2), 186-194 (1973). https://doi.org/10.2118/3798-PA
  28. Wilson, P. M., Murphy, C. L., and Foster, W. R., "The Effects of Sulfonate Molecular Weight and Salt Concentration on the Interfacial Tension of Oil-brine-surfactant Systems," SPE Improved Oil Recovery Symposium, Tulsa, OK, Mar., pp. 22-24 (1976).
  29. Wilson, P. M., and Brandner, C. F., "Aqueous Surfactant Solutions which Exhibit Ultra-low Tensions at the Oil-water Interface," J. Colloid Interf. Sci., 60(3), 473-479 (1977). https://doi.org/10.1016/0021-9797(77)90311-3
  30. Foster, W. R., "A low-tension Water Flooding Process," J. Pet. Technol., 25(2), 205-210 (1973). https://doi.org/10.2118/3803-PA