DOI QR코드

DOI QR Code

Raman Spectroscopy and Molecular Modeling Study on the CH4 and SF6 Mixture Gas Hydrate Growth Behavior

라만 분광학과 분자모델링을 이용한 메탄 및 육불화황 혼합 가스 하이드레이트 성장 거동 연구

  • Lim, Jun-Heok (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Ju Dong (Korea Institute of Industrial Technology) ;
  • Park, Sung Soo (Corporate R&D Center, Samsung SDI Co. Ltd.) ;
  • Eom, Ki Heon (Department of Chemical Engineering, Pukyong National University) ;
  • Won, Yong Sun (Department of Chemical Engineering, Pukyong National University)
  • Received : 2013.08.19
  • Accepted : 2013.10.14
  • Published : 2013.12.31

Abstract

The growth behavior of $CH_4$ and $SF_6$ mixture gas hydrate has been investigated by a combined approach of Raman spectroscopy and molecular modeling. Raman spectroscopy results presented that when $CH_4$ is used only, $CH_4$ guest molecule is inserted first into the large cavity of the host structure built by $H_2O$ molecules and then into the small cavity to stabilize the whole gas hydrate structure. In the other hand, when $SF_6$ is mixed together, $SF_6$ is favored over (or competing with) $CH_4$ in being inserted into the large cavity and the small cavity still prefers $CH_4$ insertion. The calculations of binding energies clearly supported this. While $SF_6$ has a binding energy of -26.9 kcal/mol a little lower than -24.2 kcal/mol of $CH_4$ in the large cavity, $SF_6$ and $CH_4$ has 1.2 kcal/mol and -22.0 kcal/mol, respectively, in the small cavity. It indicates that the sizable $SF_6$ is not preferred in the small cavity but has a relative energetic advantage over $CH_4$ in the large cavity.

라만 분광학과 분자 모델링을 이용하여 메탄과 육불화황의 혼합 기체 가스 하이드레이트의 성장거동을 연구하였다. 라만 분광학 결과에 의하면 메탄을 객체 가스로 사용할 경우 메탄이 물 분자로 이루어지는 가스 하이드레이트 호스트 구조 내의 큰 동공을 채우고 차례로 작은 동공이 채워지게 되는데 반하여 육불화황을 혼합한 경우 육불화황과 메탄이 경쟁적으로 큰 동공을 채우고 이어 작은 동공에는 메탄만 채워지는 방식으로 전체 가스 하이드레이트 구조가 안정화됨을 관찰하였다. 분자 모델링에 의한 결합에너지 계산 결과 큰 동공의 경우 육불화황은 -26.9 kcal/mol, 메탄은 -24.2 kcal/mol의 결합에너지를 보여 육불화황이 채워지는 것이 약간 더 안정함을 알 수 있었고 작은 동공의 경우 육불화황은 1.2 kcal/mol, 메탄은 -22.0 kcal/mol로 큰 크기의 육불화황이 작은 동공에는 채워질 수 없음을 보여주었다. 이와 같은 접근법은 향후 다양한 객체 기체 가스 하이드레이트의 성장거동을 예측하는데 적용될 수 있을 것이다.

Keywords

References

  1. Khawaji, A. D., Kutubkhanah, I. K., and Wie, J-M., "Advances in Seawater Desalination Technologies," Desalination, 221, 47-69 (2008). https://doi.org/10.1016/j.desal.2007.01.067
  2. Bradshaw, R. W., Simmons, B. A., Majzoub, E. H., Clift, W. M., and Dedrick, D. E., "Clathrate Hydrates for Production of Potable Water," Materials Research Society Symposia Proceedings, 930, 14-19 (2006).
  3. http://sps.esd.ornl.gov/desalinationpage.html, Oak Ridge National Laboratory (ORNL).
  4. Bradshaw, R. W., Greathouse, J. A., Cygan, R. T., Simmons, B. A., Dedrick, D. E., and Majzoub, E. H., "Desalination Utilizing Clathrate Hydrates (LDRD Final Report)," Sandia National Laboratories, SAND207-6565, January,(2008).
  5. Park, K., Hong, S. Y., Lee, J. W., Kang, K. C., Lee, Y. C., Ha, M.-G., and Lee, J. D., "A New Apparatus for Seawater Desalination by Gas Hydrate Process and Removal Characteristics of Dissolved Minerals ($Na^+,\;Mg^{2+},\;Ca^{2+},\;K^+,\;B^{3+}$)," Desalination, 274, 91-96 (2011). https://doi.org/10.1016/j.desal.2011.01.084
  6. Sloan Jr., E. D., "Fundamental Principles and Applications of Natural Gas Hydrates," Nature, 426, 353-359 (2003). https://doi.org/10.1038/nature02135
  7. Sloan Jr., E. D., Clathrate Hydrate of Natural Gases, Marcel Dekker, Inc., New York, 1998.
  8. Cha, I., Lee, S., Lee, J. D., Lee, G.-W., and Seo, Y., "Separation of $SF_6$ from Gas Mixtures Using Gas Hydrate Formation," Environ. Sci. Technol., 44, 6117-6122 (2010). https://doi.org/10.1021/es1004818
  9. Lee, E. K., Lee, J. D., Lee, H. J., Lee, B. R., Lee, Y. S., Kim, S. M., Park, H. O., Kim, Y. S., Park, Y. -D., and Kim, Y. D., "Pure $SF_6$ and $SF_6N_2$ Mixture Gas Hydrates Equilibrium and Kinetic Characteristics," Environ. Sci. Technol., 43, 7723-7727 (2009). https://doi.org/10.1021/es901350v
  10. Lee, B. R., Lee, J. D., Lee, H. J., Ryu, Y. B., Lee, M. S., Kim, Y. S., Englezos, P., Kim, M. H., and Kim, Y. D., "Surfactant Effects on $SF_6$ Hydrate Formation," J. Colloid Interf. Sci., 331, 55-59 (2009). https://doi.org/10.1016/j.jcis.2008.11.031
  11. Frisch, M. J., et al., Gaussian 09 revision B.02, Gaussian, Inc., Wallingford, CT (2010).
  12. Grimme, S., "Semiempirical GGA-type Density Functional Constructed with a Long-range Dispersion Correction," J. Comput. Chem., 27, 1787-1799 (2006). https://doi.org/10.1002/jcc.20495
  13. Kendall, R. A, Dunning Jr., T. H., and Harrison, R. J., "Electron Affinities of the First-row Atoms Revisited Systematic Basis Sets and Wave Functions," J. Chem. Phys., 96, 6796-6806 (1992). https://doi.org/10.1063/1.462569
  14. Woon, D. E., and Dunning Jr., T. H.,, "Gaussian Basis Sets for Use in Correlated Molecular Calculations III The Atoms Aluminum through Argon," J. Chem. Phys., 98, 1358-1371 (1993). https://doi.org/10.1063/1.464303
  15. Khan, A., "Stabilization of Hydrate Structure H by $N_2$ and $CH_4$ Molecules in $4^35^66^3$ and $5^{12}$ Cavities, and Fused Structure Formation with $5^{12}6^8$ Cage: A Theoretical Study," J. Phys. Chem. A, 105, 7429-7434 (2001). https://doi.org/10.1021/jp010264n
  16. Khan, A., "Theoretical Studies of $CO_2(H_2O)_{20,24,28}$ Clusters: Stabilization of Cages in Hydrates by $CO_2$ Guest Molecules," J. Mol. Struc. (Theochem), 664-665, 237-245(2003). https://doi.org/10.1016/j.theochem.2003.09.010
  17. Sortland, L. D., and Robinson, D. B., "The Hydrates of Methane and Sulphur Hexafluoride," Can. J. Chem. Eng., 42, 38-42 (1964). https://doi.org/10.1002/cjce.5450420107
  18. Dyadin, Y. A., Larionov, E. G., Manakov, A. Y., Kurnosov, A. V., Zhurko, F. V., Aladko, E. Y., Ancharov, A. I., Tolochko, B. P., and Sheromov, M. A., "Clathrate Hydrates of Sulfur Hexafluoride at High Pressures," J. Incl. Phenom. Macrocycl. Chem., 42, 213-218 (2002). https://doi.org/10.1023/A:1016093231181

Cited by

  1. 수소불화탄소 및 수소염화불화탄소 냉매(R-134a, R-227ea, R-236fa, R-141b)를 이용한 가스 하이드레이트 형성에 관한 계산화학적 해석 vol.55, pp.5, 2013, https://doi.org/10.9713/kcer.2017.55.5.704
  2. 해저 퇴적토 내 유기성 메탄 회수를 위한 가스하이드레이트 치환기법 연구 vol.26, pp.4, 2013, https://doi.org/10.17137/korrae.2018.26.4.5