References
- Acir, N. (2005), Classification of ECG beats by using a fast least square support vector machines with a dynamic programming feature selection algorithm, Neural Computing and Applications, 14(4), 299-309. https://doi.org/10.1007/s00521-005-0466-z
- Chan, H. L., Siao, Y. C., Chen, S. W., and Yu, S. F. (2008), Wavelet-based ECG compression by bitfield preserving and running length encoding, Computer Methods and Programs in Biomedicine, 90(1), 1-8. https://doi.org/10.1016/j.cmpb.2007.11.006
- Chen, S. W., Chen, H. C., and Chan, H. L. (2006), A real-time QRS detection method based on movingaveraging incorporating with wavelet denoising, Computer Methods and Programs in Biomedicine, 82(3), 187-195. https://doi.org/10.1016/j.cmpb.2005.11.012
- Christov, I., Gomez-Herrero, G., Krasteva, V., Jekova, I., Gotchev, A., and Egiazarian, K. (2006), Comparative study of morphological and time-frequency ECG descriptors for heartbeat classification, Medical Engineering and Physics, 28(9), 876-887. https://doi.org/10.1016/j.medengphy.2005.12.010
- De Chazal, P., O'Dwyer, M., and Reilly, R. B. (2004), Automatic classification of heartbeats using ECG morphology and heartbeat interval features, IEEE Transactions on Biomedical Engineering, 51(7), 1196-1206. https://doi.org/10.1109/TBME.2004.827359
- Dubois, R., Maison-Blanche, P., Quenet, B., and Dreyfus, G. (2007), Automatic ECG wave extraction in long-term recordings using Gaussian mesa function models and nonlinear probability estimators, Computer Methods and Programs in Biomedicine, 88(3), 217-233. https://doi.org/10.1016/j.cmpb.2007.09.005
- Friesen, G. M., Jannett, T. C., Jadallah, M. A., Yates, S. L., Quint, S. R., and Nagle, H. T. (1990), A comparison of the noise sensitivity of nine QRS detection algorithms, IEEE Transactions on Biomedical Engineering, 37(1), 85-98. https://doi.org/10.1109/10.43620
- Hamilton, P. S. and Tompkins, W. J. (1986), Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database, IEEE Transactions on Biomedical Engineering, 33(12), 1157-1165.
- Jiang, B. C., Yang, W. H., and Chen, J. D. (2007), The detection of ECG R-wave based on the concept of slope and continuous runs, Proceedings of the 13th ISSAT International Conference on Reliability and Quality in Design, Seattle, WA.
- Kadambe, S. and Srinivasan, P. (2006), Adaptive wavelets for signal classification and compression, AEU-International Journal of Electronics and Communications, 60(1), 45-55. https://doi.org/10.1016/j.aeue.2005.01.006
- Madeiro, J. P., Cortez, P. C., Oliveira, F. I., and Siqueira, R. S. (2007), A new approach to QRS segmentation based on wavelet bases and adaptive threshold technique, Medical Engineering and Physics, 29(1), 26-37. https://doi.org/10.1016/j.medengphy.2006.01.008
- Meyer, C., Gavela, J. F., and Harris, M. (2006), Combining algorithms in automatic detection of QRS complexes in ECG signals, IEEE Transactions on Information Technology in Biomedicine, 10(3), 468-475. https://doi.org/10.1109/TITB.2006.875662
- MIT/BIH Arrhythmia Database (2007), MIT-BIH arrhythmia database, cited 2013 Nov 1, Available from: http://www.physionet.org/physiobank/database/mitdb.
- Montgomery, D. C. (2005), Introduction to Statistical Quality Control, (5th ed.), Wiley, Hoboken, NJ.
- Moody, G. B. and Mark, R. G. (2001), The impact of the MIT-BIH arrhythmia database, IEEE Engineering in Medicine and Biology Magazine, 20(3), 45-50. https://doi.org/10.1109/51.932724
- Osowski, S. and Nghia, D. D. (2002), Fourier and wavelet descriptors for shape recognition using neural networks: a comparative study, Pattern Recognition, 35(9), 1949-1957. https://doi.org/10.1016/S0031-3203(01)00153-4
- Pan, J. and Tompkins, W. J. (1985), A real-time QRS detection algorithm, IEEE Transactions on Biomedical Engineering, 32(3), 230-236.
- Paoletti, M. and Marchesi, C. (2006), Discovering dangerous patterns in long-term ambulatory ECG recordings using a fast QRS detection algorithm and explorative data analysis, Computer Methods and Programs in Biomedicine, 82(1), 20-30. https://doi.org/10.1016/j.cmpb.2006.01.005
- Ravier, P., Leclerc, F., Dumez-Viou, C., and Lamarque, G. (2007), Redefining performance evaluation tools for real-time QRS complex classification systems, IEEE Transactions on Biomedical Engineering, 54(9), 1706-1710. https://doi.org/10.1109/TBME.2007.902594
- Ros, E., Mota, S., Fernandez, F. J., Toro, F. J., and Bernier, J. L. (2004), ECG Characterization of paroxysmal atrial fibrillation: parameter extraction and automatic diagnosis algorithm, Computers in Biology and Medicine, 34(8), 679-696. https://doi.org/10.1016/j.compbiomed.2003.10.002
- So, H. H. and Chan, K. L. (1997), Development of QRS detection method for real-time ambulatory cardiac monitor, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, 289-292.
- Sternickel, K. (2002), Automatic pattern recognition in ECG time series, Computer Methods and Programs in Biomedicine, 68(2), 109-115. https://doi.org/10.1016/S0169-2607(01)00168-7
- Tsipouras, M. G., Fotiadis, D. I., and Sideris, D. (2005), An arrhythmia classification system based on the RR-interval signal, Artificial Intelligence in Medicine, 33(3), 237-250. https://doi.org/10.1016/j.artmed.2004.03.007
- Ubeyli, E. D. (2007), ECG beats classification using multiclass support vector machines with error correcting output codes, Digital Signal Processing, 17 (3), 675-684. https://doi.org/10.1016/j.dsp.2006.11.009
- Yen, S. Y. (2007), The ECG features detection and arrhythmia classification system, Master's thesis, Department of Industrial Engineering and Management, Yuan Ze University, Chung-Li, Taiwan.