참고문헌
- S. Amari, "Differential geometry of curved exponential families, curvature and information loss", Ann. Stat., Vol. 10, pp. 357- 385, 1982. https://doi.org/10.1214/aos/1176345779
- Baranchick, A. "Multiple regression and estimation of the mean of a multivariate normal distribution", Technical Report, 51, Department of Statistics, Stanford university, 1984.
- H. Y. Baek, "Lindley type estimators with the known norm", Journal of the Korean Data & Information Science Society, Vol. 11, pp. 37-45, 2000.
- H. Y. Baek and J. M. Lee, "Lindley type estimators when the norm is restricted to an interval", Journal of the Korean Data & Information Science Society, Vol. 16, pp. 1027-1039, 2005.
- J. 0. Berger, "Admissible minimax estimation of a multivariate normal mean with arbitrary quadratic loss", Ann. Stat., Vol. 4, pp. 223-226, 1976. https://doi.org/10.1214/aos/1176343356
- M. E. Bock, "Minimax estimation of the mean of a multivariate normal distribution", Ann. Stat., Vol. 3, No. 1, pp. 209-218, 1975. https://doi.org/10.1214/aos/1176343009
- L. D. Brown, "Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters", Annals of Mathematical Statistics, Vol. 39, pp. 29-48, 1968. https://doi.org/10.1214/aoms/1177698503
- B. Efron, "The geometry of exponential families", Ann. Stat., Vol. 6, pp. 362-376, 1978. https://doi.org/10.1214/aos/1176344130
- D. V. Hinkley, "Conditional inference about a normal mean with known coefficient of variation", Biometrika, Vol. 64, pp. 105-108, 1977. https://doi.org/10.1093/biomet/64.1.105
- W. James and C. Stein, "Estimation with quadratic loss", In proceeding Fourth Berkeley Symp. Math. Statis. Probability, 1, University of California Press, Berkeley, pp. 361-380, 1961.
- T. Kariya, "Equivariant estimation in a model with ancillary statistics", Ann. Stat., Vol. 17, pp. 920-928, 1989. https://doi.org/10.1214/aos/1176347151
- B. H. Kim, T. W. Koh, and H. Y. Baek, "Estimators with nondecreasing risk in a multivariate normal distribution", J. Korean Stat. Soc., Vol. 24, pp. 257-266, 1995.
- B. H. Kim and H. Y. Baek "A sequence of improvement over the Lindley type estimator with the cases of unknown covariance matrices", Korean Communications in Statistics, Vol. 12, pp. 463-472, 2005. https://doi.org/10.5351/CKSS.2005.12.2.463
- T. Kubokawa, "An approach to improving the James-Stein Estimator", J. Multivar. Anal., Vol. 36, pp. 121-126, 1991. https://doi.org/10.1016/0047-259X(91)90096-K
- D. V. Lindley, "Discussion of paper by C. Stein", J. Roy. Statist. Soc. Ser. B, Vol. 24, pp. 265-296, 1962.
- E. Marchand and N. C. Giri, "James- Stein estimation with constraints on the norm", Commun. Stat.-Theory Methods, Vol. 22, pp. 2903-2924, 1993. https://doi.org/10.1080/03610929308831192
- T. R. Park and H. Y. Baek, "An approach to improving the Lindley estimator", Journal of the Korean Data & Information Science Society, Vol. 22, pp. 1251-1256, 2011.
- F. Perron and N. Giri, "On the best equivariant estimator of mean of a multivariate normal population", J. Multivar. Anal., Vol. 32, pp. 1-16, 1989.
- W. E. Strawderman, "Minimax estimation of location parameters for certain spherically symmetric distributions", J. Multivar. Anal., Vol. 4, pp. 255-264, 1974. https://doi.org/10.1016/0047-259X(74)90032-3