DOI QR코드

DOI QR Code

Analysis of Behaviour of Prey to avoid Pursuit using Quick Rotation

급회전을 이용한 희생자의 추격 피하기 행동 분석

  • Lee, Jae Moon (Dept. of Multimedia Engineering, Hansung University)
  • 이재문 (한성대학교 멀티미디어공학과)
  • Received : 2013.11.25
  • Accepted : 2013.12.10
  • Published : 2013.12.20

Abstract

This paper analyzes the behaviour of a prey to avoid the pursuit of a predator at predator-prey relationship to be appeared in the collective behavior of animals. One of the methods to avoid the pursuit of a predator is to rotate quickly when a predator arrives near to it. At that moment, a critical distance and a rotating angular are very important for the prey in order to survive from the pursuit, where the critical distance is the distance between the predator and the prey just before rotation. In order to analyze the critical distance and the rotating angular, this paper introduces the energy for a predator which it has at starting point of the chase and consumes during the chase. Through simulations, we can know that the rotating angle for a prey to survive from the pursuit is increased when the critical distance is shorter and when the ratio of predator's mass and prey's mass is also decreased. The results of simulations are the similar phenomenon in nature and therefore it means that the method to analyze in this paper is correct.

본 논문은 동물들의 집단행동에서 나타나는 포식자-희생자 관계에서 포식자에 대한 희생자의 추격회피 행동을 분석한다. 희생자가 포식자의 추격을 피하는 하나의 방법이 인접거리에서 급회전을 하는 것이다. 그때 희생자가 추격으로부터 살아남기 위해서는 임계거리와 회전각은 매우 중요하다. 여기서 임계거리는 회전 시작 직전 포식자와 희생자 사이의 거리이다. 이러한 임계거리와 회전각을 분석하기 위하여 본 논문은 추격의 시작에서 보유한 포식자의 에너지와 추격동안 소비한 포식자의 에너지를 이용한다. 시뮬레이션을 통하여, 임계거리가 짧을수록 희생자가 추격으로부터 살아남을 수 있는 회전각은 커진다는 것과 포식자의 질량에 대한 희생자의 질량의 비율이 작아지는 경우에도 역시 회전각 커진다는 것을 알 수 있었다. 시뮬레이션 결과는 자연에서 나타나는 현상과 유사하며, 따라서 이것은 본 논문에서 분석한 방법이 옳다는 것을 의미한다.

Keywords

References

  1. Reynolds, C. W., "Flocks, Herds, and Schools: A Distributed Behavioral Model", SIGGRAPH, 21(4), pp. 25-34, 1987. https://doi.org/10.1145/37402.37406
  2. Mat Buckland, "Programming Game AI by Example", ISBN 1556220782, Wordware Publications, 2005.
  3. Gianluigi Folino, Agostino Forestiero, Giandomenico Spezzano, "An adaptive flocking algorithm for performing approximate clustering", Inf. Sci., 179(18), pp. 3059-3078, 2009. https://doi.org/10.1016/j.ins.2009.05.017
  4. Jae Moon Lee, "An Efficient Algorithm to Find k-Nearest Neighbors in Flocking Behavior", Information Processing Letters, pp. 576-579, 2010.
  5. Xiaoyuan Luo, Shaobao Li, Xinping Guan, "Flocking algorithm with multi-target tracking for multi-agent systems", Pattern Recognition Letters, pp. 800-805, 31, 2010. https://doi.org/10.1016/j.patrec.2010.01.014
  6. Vladimir Zhdankin and J. C. Sprott, "Simple predator-prey swarming model", PHYSICAL REVIEW E 82, 056209-1-7, 2010. https://doi.org/10.1103/PhysRevE.82.056209
  7. Dal-ho Cho, Yong ho Lee, Jin Hyung Kim, So-Young Park and Dae-Woong Rhee, "NPC Control Model for Defense in Soccer Game Applying the Decision Tree Learning Algorithm", Journal of Korea Game Society, v.11, no.6, pp.61-70 , 2011.
  8. Sung Hyun Cho and Jae Moon Lee, "Group Behavior Simulation of Multi-Agents by Using Steering Forces in an Enclosed Space", Journal of Korea Game Society, v.11, no.1, pp.111-120, 2011.
  9. Jae Moon Lee, Young Mee Kwon, "A Model of Pursuing Energy of Predator in Single Predator-Prey Environment", Journal of Korea Game Society, v.13, no.1, pp.41-48, 2013. https://doi.org/10.7583/JKGS.2013.13.1.41
  10. Seong Kyu Lim, Se Young Jeon, Jun Min Park, Jae Moon Lee, Kitae Hwang, "Analysis of Behaviors for Prey to Evade", Proc. of Korea Game Society, Autumn, 2013.

Cited by

  1. Implementation of Natural Behavior Patterns of Monster based on Energy Model vol.14, pp.5, 2014, https://doi.org/10.7583/JKGS.2014.14.5.87
  2. PBR(Physically based Render) simulation considered mathematical Fresnel model for Game Improvement vol.16, pp.1, 2016, https://doi.org/10.7583/JKGS.2016.16.1.111