References
- Bernal, D. and Beck, J. (Eds). (2004), "Special section: phase I of the IASC-ASCE structural health monitoring benchmark", J. Eng. Mech. - ASCE, 130(1), 1-127. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(1)
- Chang, F.K. (Ed.) (2009, 2011), Proceedings of the 6th, 7th and the 8th International Workshops on Structural Health Monitoring, Stanford University, Stanford, CA, CRC Press, New York.
- Chen, J and Li, J. (2004), "Simultaneous identification of structural parameters and input time history from output-only measurements", Comput. Mech., 33(5), 365-374. https://doi.org/10.1007/s00466-003-0538-9
- Ghanem, R.G. and Shinozuka, M. (1995), "Structural system identification I: theory", J. Eng. Mech. - ASCE, 121(2), 255-264. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:2(255)
- Glaser, S.D., Li, H., Wang, M.L., Ou, J.P. and Lynch, J.P. (2007), "Sensor technology innovation for the advancement of structural health monitoring: a strategic program of US-China research for the next decade", Smart Struct. Syst., 3(2), 221-244. https://doi.org/10.12989/sss.2007.3.2.221
- Hoshiya, M. and Saito, E. (1984), "Structural identification by extended Kalman filter", J. Eng. Mech.- ASCE, 110(12), 1757-1771. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:12(1757)
- Hou, J.L., Jankowski, L. and Ou, J.P. (2011), "A substructural isolation method for local structural health monitoring", Struct. Health Monit ., 18, 601-618. https://doi.org/10.1002/stc.389
- Hsieh, C.S. and Chen, F.C. (1999), "Optimal Solution of the Two-Stage Kalman Estimator", IEEE T. Automat.Contr., 44(1), 194-199. https://doi.org/10.1109/9.739135
- Huang, H.W. and Yang, J.N. (2008), "Damage identification of substructure for local health monitoring", Smart Struct. Syst., 4(6), 795-807. https://doi.org/10.12989/sss.2008.4.6.795
- Johnson, E.A., Lam, H.F., Katafygiotis, L.S. and Beck, J.L. (2004), "The phase I IASC-ASCE structural health monitoring benchmark problem using simulated data", J. Eng. Mech. - ASCE, 130(1), 3-15. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(3)
- Kathuda, H., Martinez, R. and Hladar, A. (2005), "Health assessment at local level with unknown input excitation", J. Struct. Eng.- ASCE, 131(6), 956-965. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:6(956)
- Koh, C.G., See, L.M. and Balendra, T. (1991), "Estimation of structural parameters in time domain: a substructure approach", Earthq. Eng. Struct. D., 20(8), 787-801. https://doi.org/10.1002/eqe.4290200806
- Koh, C.G. and Shankar K. (2003), "Substructural identification method without interface measurement", J. Eng. Mech. - ASCE, 129(7), 769-776. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:7(769)
- Law, S.S. and Yong, D. (2011), "Substructure methods for structural condition assessment", J. Sound Vib., 330(5), 3606-3619. https://doi.org/10.1016/j.jsv.2011.03.003
- Law, S.S., Zhang, K. and Duan, Z.D. (2011), "Structural damage detection from coupling forces between substructures under support excitation", Eng. Struct., 32(8), 2221-2228.
- Lei, Y., Lei, J.Y. and Song, Y. (2007), "Element level structural damage detection with limited observations and with unknown inputs", Proceedings of the SPIE's Conference on Health Monitoring of Structural and Biological Systems, 6532, 65321X1-X9, San Diego, CA, USA.
- Lee, K.J. and Yun, C.B. (2008),"Parameter identification for nonlinear behavior of RC bridge piers using sequential modified extended Kalman filter", Smart Struct. Syst., 4(3), 319-342. https://doi.org/10.12989/sss.2008.4.3.319
- Ling, X.L. and Haldar, A. (2004), "Element level system identification with unknown input with rayleigh damping", J. Eng. Mech. - ASCE, 130(8), 877-885. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:8(877)
- Meier, U., Havaranek, B. and Motavalli M. (Eds.) (2009), Proceedings of the 4th International Conference on structural health monitoring of intelligent infrastructures, Zurich.
- Tee, K.F., Koh, C.G. and Quek, S.T. (2009), "Numerical and experimental studies of a substructural identification strategy", Struct. Health Monit., 8(5), 397-410. https://doi.org/10.1177/1475921709102089
- Trinh, T.N. and Koh, C.G. (2011), "An improved substructural identification strategy for large structural systems", Struct. Health Monit., Article first published online, 25 MAY 2011 DOI: 10.1002/stc.463.
- Weng, S., Xia,Y., Xu, Y.L. and Zhu, H.P. (2011), "Substructure based approach to finite element model updating", Comput. Struct., 89(9-10), 772-782. https://doi.org/10.1016/j.compstruc.2011.02.004
- Wu, Z.S., Xu, B. and Harada, T. (2003), "Review on structural health monitoring for infrastructures", J. Appl. Mech. - JSCE, 6, 1043-1054. https://doi.org/10.2208/journalam.6.1043
- Xu, B. (2005), "Time domain substructural post-earthquake damage diagnosis methodology with neural networks", Lecture Note Comput. Sci., 3611, 520-529,
- Xu, B., Rovekamp, J.H,R. and Dyke, S.J. (2012), "Structural parameters and dynamic loading identification form incomplete measurements: approach and validation", Mech. Syst. Signal Pr., 28, 244-257. https://doi.org/10.1016/j.ymssp.2011.07.008
- Yang, J.N., Pan S. and Huang, H.W. (2007), "An adaptive extended Kalman filter for structural damage identification II: unknown inputs", Struct. Health Monit., 14(3), 497-521. https://doi.org/10.1002/stc.171
Cited by
- Assessment on Time-Varying Thermal Loading of Engineering Structures Based on a New Solar Radiation Model vol.2014, 2014, https://doi.org/10.1155/2014/639867
- Damage Detection for Continuous Bridge Based on Static-Dynamic Condensation and Extended Kalman Filtering vol.2014, 2014, https://doi.org/10.1155/2014/707969
- Locate Damage in Long-Span Bridges Based on Stress Influence Lines and Information Fusion Technique vol.17, pp.8, 2014, https://doi.org/10.1260/1369-4332.17.8.1089
- Locating and identifying model-free structural nonlinearities and systems using incomplete measured structural responses vol.15, pp.2, 2015, https://doi.org/10.12989/sss.2015.15.2.409
- Substructure isolation and damage identification using free responses vol.57, pp.9, 2014, https://doi.org/10.1007/s11431-014-5622-1
- Identification of model-free structural nonlinear restoring forces using partial measurements of structural responses vol.20, pp.1, 2017, https://doi.org/10.1177/1369433216646006
- Improved decentralized structural identification with output-only measurements 2017, https://doi.org/10.1016/j.measurement.2017.09.029
- Parametric identification of a cable-stayed bridge using least square estimation with substructure approach vol.15, pp.2, 2015, https://doi.org/10.12989/sss.2015.15.2.425
- Construction of orthogonal projector for the damage identification by measured substructural flexibility vol.88, 2016, https://doi.org/10.1016/j.measurement.2015.12.047
- Structural health monitoring using DOG multi-scale space: an approach for analyzing damage characteristics vol.27, pp.3, 2018, https://doi.org/10.1088/1361-665X/aaa7ff
- Optimal sensor placement for health monitoring of high-rise structure based on collaborative-climb monkey algorithm vol.54, pp.2, 2015, https://doi.org/10.12989/sem.2015.54.2.305
- A Damage Prognosis Method of Girder Structures Based on Wavelet Neural Networks vol.2014, 2014, https://doi.org/10.1155/2014/130274
- Practical issues in signal processing for structural flexibility identification vol.15, pp.1, 2015, https://doi.org/10.12989/sss.2015.15.1.209
- A two-stage and two-step algorithm for the identification of structural damage and unknown excitations: numerical and experimental studies vol.15, pp.1, 2015, https://doi.org/10.12989/sss.2015.15.1.057
- A Multiscale Finite Element Model Validation Method of Composite Cable-Stayed Bridge Based on Structural Health Monitoring System vol.2015, 2015, https://doi.org/10.1155/2015/817281
- Dynamic condensation approach to calculation of structural responses and response sensitivities vol.88, 2017, https://doi.org/10.1016/j.ymssp.2016.11.025
- Structural damage identification with power spectral density transmissibility: numerical and experimental studies vol.15, pp.1, 2015, https://doi.org/10.12989/sss.2015.15.1.015
- A new swarm intelligent optimization algorithm: Pigeon Colony Algorithm (PCA) vol.18, pp.3, 2016, https://doi.org/10.12989/sss.2016.18.3.425
- Sensor Placement Optimization in Structural Health Monitoring Using Cluster-In-Cluster Firefly Algorithm vol.17, pp.8, 2014, https://doi.org/10.1260/1369-4332.17.8.1103
- Multisensor Aggregation Algorithms for Structural Damage Diagnosis Based on a Substructure Concept vol.141, pp.6, 2015, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000879
- Real-time substructural identification by boundary force modeling vol.25, pp.5, 2018, https://doi.org/10.1002/stc.2151
- Identifiability-Enhanced Bayesian Frequency-Domain Substructure Identification vol.33, pp.9, 2018, https://doi.org/10.1111/mice.12377
- Numerical studies on the effect of measurement noises on the online parametric identification of a cable-stayed bridge vol.19, pp.3, 2013, https://doi.org/10.12989/sss.2017.19.3.259
- Damage Identification by the Data Expansion and Substructuring Methods vol.2018, pp.None, 2013, https://doi.org/10.1155/2018/1867562
- An iterative method for damage identification of skeletal structures utilizing biconjugate gradient method and reduction of search space vol.23, pp.1, 2013, https://doi.org/10.12989/sss.2019.23.1.045
- Investigations on state estimation of smart structure systems vol.25, pp.1, 2020, https://doi.org/10.12989/sss.2020.25.1.037
- Structural Response Estimation Based on Kalman Filtering with Known Frequency Component of External Excitation and Multitype Measurements for Beam-Type Structure vol.34, pp.6, 2013, https://doi.org/10.1061/(asce)as.1943-5525.0001316