DOI QR코드

DOI QR Code

Aminophenols as Efficient Ligand for Copper-Catalyzed Ullmann-type Synthesis of Diaryl Ethers

  • Qian, Cunwei (School of Chemistry and Chemical Engineering, Yancheng Teachers University) ;
  • Qin, Liang (School of Chemistry and Chemical Engineering, Yancheng Teachers University) ;
  • Zong, Qianshou (School of Biological and Chemical Engineering, Jiaxing University) ;
  • Wu, Lin (School of Chemistry and Chemical Engineering, Yancheng Teachers University) ;
  • Fang, Dong (School of Chemistry and Chemical Engineering, Yancheng Teachers University)
  • Received : 2013.08.14
  • Accepted : 2013.09.26
  • Published : 2013.12.20

Abstract

Keywords

Experimental

All the reactions were carried out in reaction tube under argon atmosphere. Reaction temperatures were controlled by temperature modulator; Thin-layer chromatography (TLC) was performed using silica gel 60 F254 precoated plates (0.25 mm) and visualized by UV fluorescence lamp. 1H NMR and 13C NMR spectra were recorded on a 400 MHz instrument. Spectra were reported relative to Me4Si (δ 0.0 ppm) or residual CDCl3 (δ 7.26 ppm). 13C NMR were reported relative to CHCl3 (δ 77.16 ppm). Low resolution mass spectra (LRMS) were recorded on mass spectrometer.

References

  1. (a) Lindley, J. Tetrahedron 1984, 40, 1433. https://doi.org/10.1016/S0040-4020(01)91791-0
  2. (b) Theil, F. Angew. Chem., Int. Ed. 1999, 38, 2345. https://doi.org/10.1002/(SICI)1521-3773(19990816)38:16<2345::AID-ANIE2345>3.0.CO;2-5
  3. (c) Sawyer, J. S. Tetrahedron 2000, 56, 5045. https://doi.org/10.1016/S0040-4020(00)00257-X
  4. (d) Thomas, A. W.; Ley, S. V. Angew. Chem., Int. Ed. 2003, 42, 5400. https://doi.org/10.1002/anie.200300594
  5. (e) Kunz, K.; Scholz, U.; Ganzer, D. Synlett. 2003, 15, 2428.
  6. (f) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337. https://doi.org/10.1016/j.ccr.2004.09.014
  7. (a) Jung, M. E.; Rohloff, J. C. J. Org. Chem. 1985, 50, 4909. https://doi.org/10.1021/jo00224a051
  8. (b) Singh, S. B.; Pettit, G. R. J. Org. Chem. 1990, 55, 2797. https://doi.org/10.1021/jo00296a043
  9. (c) Deshpande, V. E.; Gohkhale, N. J. Tetrahedron Lett. 1992, 33, 4213. https://doi.org/10.1016/S0040-4039(00)74692-2
  10. (d) Evans, D. A.; DeViries, K. M. In Glycopeptide Antibiotics, Drugs and the Pharmaceutical Sciences; Nagarajan, R., Ed.; Marcel Decker: New York, 1994; pp 63-104.
  11. (e) Zenitani, S.; Tashiro, S.; Shindo, K.; Nagai, K.; Suzuki, K.; Imoto, M. J. Antibiot. 2003, 56, 617. https://doi.org/10.7164/antibiotics.56.617
  12. (f) Cristau, P.; Vors, J.-P.; Zhu, J. Tetrahedron 2003, 59, 7859. https://doi.org/10.1016/j.tet.2003.08.031
  13. (g) Qian, C.; Pang, Y.; Fang, D.; Zong, Q. Chinese Journal of Pesticide Science, 2013, 15(3), 44.
  14. (a) Mann, G.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 13109. https://doi.org/10.1021/ja963273w
  15. (b) Palucki, M.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 10333. https://doi.org/10.1021/ja962408v
  16. (c) Palucki, M.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 3395. https://doi.org/10.1021/ja9640152
  17. (d) Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 4369. https://doi.org/10.1021/ja990324r
  18. (e) Mann, G.; Incarvito, C.; Rheigold, A. L.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 3224. https://doi.org/10.1021/ja984321a
  19. (f) Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem. 2002, 67, 5553. https://doi.org/10.1021/jo025732j
  20. (g) Prim, D.; Campagne, J.-M.; Joseph, D.; Andrioletti, B. Tetrahedron 2002, 58, 2041. https://doi.org/10.1016/S0040-4020(02)00076-5
  21. (h) Vorogushin, A. V.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 8146. https://doi.org/10.1021/ja050471r
  22. (i) Burgos, C. H.; Barder, T. E.; Huang, X.; Buchwald, S. L. Angew. Chem., Int. Ed. 2006, 45, 4321. https://doi.org/10.1002/anie.200601253
  23. Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382. https://doi.org/10.1002/cber.190303602174
  24. Marcoux, J.-F.; Doye, S.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 10539. https://doi.org/10.1021/ja971901j
  25. Fagan, P. J.; Hauptman, E.; Shapiro, R.; Casalnuovo, A. J. Am. Chem. Soc. 2000, 122, 5043. https://doi.org/10.1021/ja000094c
  26. Qian, C.; Xu, S.; Fang, D.; Zong, Q. Chin. J. Chem. 2012, 30, 1881. https://doi.org/10.1002/cjoc.201200247
  27. Buck, E.; Song, Z. J.; Tschaen, D.; Dormer, P. G.; Volante, R. P.; Reider, P. J. Org. Lett. 2002, 4, 1623. https://doi.org/10.1021/ol025839t
  28. Ma, D.; Cai, Q.; Zhang, H. Org. Lett. 2003, 5, 3799. https://doi.org/10.1021/ol0350947
  29. Cai, Q.; Zou, B.; Ma, D. Angew. Chem., Int. Ed. 2006, 45, 1276. https://doi.org/10.1002/anie.200503538
  30. Cai, Q.; He, G.; Ma, D. J. Org. Chem. 2006, 71, 5268. https://doi.org/10.1021/jo0606960
  31. Ouali, A.; Spindler, J. F.; Cristau, H.-J.; Taillefer, M. Adv. Synth. Catal. 2006, 348, 499. https://doi.org/10.1002/adsc.200505385
  32. Cristau, H. J.; Cellier, P. P.; Hamada, S.; Spindler, J. F.; Tailefer, M. Org. Lett. 2004, 6, 913. https://doi.org/10.1021/ol036290g
  33. Rao, H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Chem.-Eur. J. 2006, 12, 3636. https://doi.org/10.1002/chem.200501473
  34. Palomo, C.; Oiarbide, M.; Lopez, R.; Gomez-Bengoa, E. Chem. Commun. 1998, 2091.
  35. Lv, X.; Bao, W. J. Org. Chem. 2007, 72, 3863. https://doi.org/10.1021/jo070443m
  36. Naidu, A. B.; Raghunath, O. R.; Prasad, D. J. C.; Sekar, G. Tetrahedron Lett. 2008, 49, 1057. https://doi.org/10.1016/j.tetlet.2007.11.203
  37. Chen, Y.; Chen, H. Org. Lett. 2006, 8, 5609. https://doi.org/10.1021/ol062339h
  38. Miao, T.; Wang, L. Tetrahedron Lett. 2007, 48, 95. https://doi.org/10.1016/j.tetlet.2006.11.001
  39. Evans, D. A.; Katz, J. L.; West, T. R. Tetrahedron Lett. 1998, 39, 2937. https://doi.org/10.1016/S0040-4039(98)00502-4
  40. Zhao, Y.; Wang, Y.; Sun, H.; Li, L.; Zhang, H. Chem. Commun. 2007, 3186.
  41. Zhang, Q.; Wang, D.; Wang, X.; Ding, K. J. Org. Chem. 2009, 74, 7187. https://doi.org/10.1021/jo9012157
  42. Chang, J. W. W.; Chee, S.; Maka, S.; Buranaprasertsuk, P.; Chavasiri, W.; Chan, P. W. H. Tetrahedron Lett. 2008, 49, 1018.
  43. Maiti, D.; Buchwald, S. L. J. Org. Chem. 2010, 75, 1791. https://doi.org/10.1021/jo9026935
  44. Qian, C.; Zong, Q.; Fang, D. Chin. J. Chem. 2012, 30, 199. https://doi.org/10.1002/cjoc.201100077
  45. Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Org. Lett. 2001, 3, 4315. https://doi.org/10.1021/ol0170105
  46. Gujadhur, R. K.; Venkataraman, D. Synth. Commun. 2001, 31, 2865. https://doi.org/10.1081/SCC-100105338
  47. Niu, J.; Zhou, H.; Li, Z.; Xu, J.; Hu, S. J. Org. Chem. 2008, 73, 7814. https://doi.org/10.1021/jo801002c
  48. (a) Cameron, P. A.; Gibson, V. C.; Redshaw, C.; Segal, J. A.; White, A. J. P.; Williams, D. J. Dalton Trans. 2002, 415.
  49. (b) Oakes, D. C. H.; Kimberley, B. S.; Gibson, V. C.; Jones, D. J.; White, A. J. P.; Williams, D. J. Chem. Commun. 2004, 2174.
  50. (c) Oakes, D. C. H.; Gibson, V. C.; White, A. J. P.; Williams, D. J. Inorg. Chem. 2006, 45, 3477.
  51. (d) Nimitsiriwat, N.; Gibson, V. C.; Marshall, E. L.; Elsegood, M. R. J. Inorg. Chem. 2008, 47, 5417. https://doi.org/10.1021/ic701671s
  52. (e) Nimitsiriwat, N.; Marshall, E. L.; Gibson, V. C.; Elsegood, M. R. J.; Dale, S. H. J. Am. Chem. Soc. 2004, 126, 13598. https://doi.org/10.1021/ja0470315
  53. (f) Nimitsiriwat, N.; Gibson, V. C.; Marshall, E. L.; Elsegood, M. R. J. Dalton Trans. 2009, 3710.
  54. (g) Meppelder, G. J. M.; Fan, H. T.; Spaniol, T. P.; Okuda, J. Inorg. Chem. 2009, 48, 7378. https://doi.org/10.1021/ic900903b
  55. (h) Douglas, A. F.; Patrick, B. O.; Mehrkhodavandi, P. Angew. Chem., Int. Ed. 2008, 47, 2290. https://doi.org/10.1002/anie.200705033
  56. (i) Wang, X. K.; Chen, Z.; Sun, X. L.; Tang, Y.; Xie, Z. W. Org. Lett. 2011, 13, 4758. https://doi.org/10.1021/ol201731m
  57. (j) Zhang, J.; Qiu, J.; Yao, Y.; Zhang, Y.; Wang, Y.; Shen, Q. Organometallics 2012, 31, 3138. https://doi.org/10.1021/om300036a
  58. (k) Lu, M.; Yao, Y. M.; Zhang, Y.; Shen, Q. Dalton Trans. 2010, 39, 9530. https://doi.org/10.1039/c0dt00025f
  59. (a) Tang, Z.; Chang, S.; Zhang, C.; Yan, L.; Liu, H. Huazhong Shifan Daxue Xuebao, ZiranKexueban, 2011, 45(1), 63.
  60. (b) Tang, Z.; Chen, W.; Zhu, Z.; Liu, Z. J. Heterocyclic Chem. 2011, 48, 255. https://doi.org/10.1002/jhet.533

Cited by

  1. Cellulose-supported N-heterocyclic carbene silver complex with pendant ferrocenyl group for diaryl ether synthesis vol.31, pp.3, 2016, https://doi.org/10.1002/aoc.3576
  2. -AEB as an efficient catalyst for C-O bond formation in water as a green Solvent vol.32, pp.9, 2018, https://doi.org/10.1002/aoc.4463
  3. ChemInform Abstract: Aminophenols as Efficient Ligand for Copper‐Catalyzed Ullmann‐Type Synthesis of Diaryl Ethers. vol.45, pp.18, 2014, https://doi.org/10.1002/chin.201418072