EXPERIMENTAL
1,10-Phenanthroline (AR, Merck, Mumbai, India), formic acid (AR, Qualigens, Mumbai, India), K2Cr2O7 (AR, BDH, India), H2SO4 (AR, Qualigens, Mumbai, India), sodium dodecyl sulfate (AR, SRL, Mumbai, India), TX-100 (AR, SRL, Mumbai, India) and all other chemicals used were of highest degree of purity available commercially. All the solutions were prepared in double distilled water. Solutions of the oxidant and reaction mixtures containing the known quantities of the substrate (s) (i.e., formic acid), promoter (1,10-phenanthroline) under the kinetic conditions [formic acid] >> [Cr(VI)]T. Acid and other necessary chemicals were separately thermostated (± 0.10 ℃). The reaction was initiated by the requisite amounts of the oxidant with the reaction mixture. Progress of the reaction was monitored by following the decay of Cr(VI) at 450 nm wavelength at different different time intervals with the UV-vis [UV-VIS-NIR-3600 (SHIMADZU)] spectrophotometer equipped with a temperature controller. Quartz cuvettes of path length 1 cm were used. The pseudo-first-order rate constants (kobs, s−1) were calculated from the slope of plots of ln(A450) versus time (t) which were linear.11 The scanned spectra and spectrum after completion of the reaction were recorded with a UV-vis spectrophotometer [UV-1800 and UV-VIS-NIR-3600 (SHIMADZU)]. A large excess (15-fold) of reductant was used in all kinetic runs. No interference was observed due to other species at 450 nm.
Surfactant micelles provide an unusual medium, which may affect the rate of reaction. One of the most important properties of micellar system is their ability to affect the rate of the chemical reaction. The effect of surfactants on reaction kinetics is called micellar catalysis involves several contributing factors. Notably, formic acid has been widely used as hydrogen source in liquid-phase transfer hydrogenation reactions of carbon dioxide in the presence of base such as amines under ambient conditions. The excess formic acid can be reoxidized to get the deserved product with further addition of chromic acid, maintaining the same reaction condition. Obviously, electrostatic attraction/repulsion plays an important role during the course of the reaction in the presence of ionic surfactants. All the surfactant concentrations used during each set of experiments are above their critical micelle concentration (CMC). The CMC values of all the three surfactants are known from earlier literature. So CMC values are very helpful to prepare the solutions of surfactants in particular concentration. Combination of TX- 100 micelle and phen promoter enhances the reaction almost 600 times faster compared to the uncatalyzed and unpromoted reaction. The mechanistic paths of uncatalyzed unpromoted and SDS catalyzed phen promoted chromic acid oxidation of glycerol have also been compared. SDS micelle in absence of phen enhances the oxidation rate compared to the TX-100 micelle. But in combined reaction mixture i.e., in presence of phen the reaction rate is highly accelerates in TX-100 micelle compared to SDS micelle. It is also noted that the cationic micelle CPC retards the reaction compared to the uncatatalyzed and unpromoted reaction. The Cr(VI)−phen complex, a cationic species has been found to act as the active oxidant in the phen-promoted chromic acid oxidation of formic acid. The generation of the final Cr(III) species after the completion of the reaction has been investigated by a series of spectral observation by UV-visible spectrophotometer. The present method of formic acid oxidation is simple, accurate, rapid, economical, and precise. In conclusion, it can be said that neutral micelle TX-100 is an efficient micellar catalyst for the phen promoted chromic acid oxidation of formic acid.
References
- Sundaram, S.; Raghavan, P. S. Chromium-VI reagents: Synthetic Application; Springer, New York, 2011.
- Purohit, P.; Kumbhani, S.; Shashtri, I.; Banerjee, K. K.; Sharma, P. K. Indian J. Chem. 2008, 47, 1671.
- Banerji, J.; Kotai, L.; Banerji, K. K. Indian J. Chem. 2009, 48, 797.
- Saha, B.; Orvig, C. Coord. Chem. Rev. 2010, 254, 2959. https://doi.org/10.1016/j.ccr.2010.06.005
- Holmes, A. L.; Wise, S. S.; Wise, J. P. Indian J. Med. Res. 2008, 128, 353.
- Saha, R.; Nandi, R.; Saha, B. J. Coord. Chem. 2011, 64, 1782. https://doi.org/10.1080/00958972.2011.583646
- Das, A. K. Coord. Chem. Rev. 2004, 248, 81. https://doi.org/10.1016/j.cct.2003.10.012
- Ghosh, A.; Saha, R.; Mukhejee, K.; Ghosh, S. K.; Bhattacharyya, S. S.; Laskar, S.; Saha, B. Int. J. Chem. Kinet. 2013, 45, 175. https://doi.org/10.1002/kin.20754
- Basu, A.; Ghosh, S. K.; Saha, R.; Ghosh, A.; Ghosh, T.; Mukherjee, K.; Bhattacharyya, S. S.; Saha, B. Tenside Surf. Det. 2012, 49, 481. https://doi.org/10.3139/113.110220
- Ghosh, S. K.; Saha, R.; Ghosh, A.; Mukherjee, K.; Saha, B. Tenside Surf. Det. 2012, 49, 370. https://doi.org/10.3139/113.110204
- Ghosh, S. K.; Ghosh, A.; Saha, R.; Saha, B. Tenside Surf. Det. 2012, 49, 296. https://doi.org/10.3139/113.110194
- Saha, R.; Ghosh, S. K.; Ghosh, A.; Saha, I.; Mukherjee, K.; Basu, A.; Saha, B. Res. Chem. Intermed. 2013, 39, 631. https://doi.org/10.1007/s11164-012-0585-y
- Ghosh, S. K.; Saha, R.; Mukherjee, K.; Ghosh, A.; Bhattacharyya, S. S.; Saha, B. J. Korean Chem. Soc. 2012, 56, 164. https://doi.org/10.5012/jkcs.2012.56.1.164
- Ghosh, S. K.; Basu, A.; Saha, R.; Nandi, R.; Saha, B. Current Inorg. Chem. 2012, 2, 86. https://doi.org/10.2174/1877944111202010086
- Ghosh, S. K.; Basu, A.; Saha, R.; Ghosh, A.; Mukherjee, K.; Saha, B. J. Coord. Chem. 2012, 65, 1158. https://doi.org/10.1080/00958972.2012.669035
- Ghosh, A.; Saha, R.; Mukhejee, K.; Ghosh, S. K.; Bhattacharyya, S. S.; Saha, B. J. Chem. Res. 2012, 36, 347. https://doi.org/10.3184/174751912X13354447752233
- Dimitratos, N.; Villa, A.; Prati, L. Catal. Lett. 2009, 133, 334. https://doi.org/10.1007/s10562-009-0192-8
- Pawar, B.; Padalkar, V.; Phatangare, K.; Nirmalkar, S.; Chaskar, A. Catal. Sci. Technol. 2011, 1, 1641. https://doi.org/10.1039/c1cy00278c
- Minkler, S. R. K.; Lipshutz, B. H.; Krause, N. Angew. Chem. 2011, 123, 7966. https://doi.org/10.1002/ange.201101396
- Nishikata, T.; Lipshutz, B. H. Chem. Commun. 2009, 6472.
- Saha, R.; Ghosh, A.; Saha, B. J. Coord. Chem. 2011, 64, 3729. https://doi.org/10.1080/00958972.2011.630463
- Lepiller, C. Direct Formic Acid Oxidation for Liquid-fed PEM Fuel Cells; Fuel cell Newsletter; Pragma Industries: February 2012.
- Kordesch, K. V.; Simader, G. R. Chem. Rev. 1995, 95, 191. https://doi.org/10.1021/cr00033a007
- Yadav, M.; Singh, A. K.; Tsumori, N.; Xu, Q. J. Mater. Chem. 2012, 22, 19146. https://doi.org/10.1039/c2jm32776g
- Boddien, A.; Mellmann, D.; Gärtner, F.; Jackstell, R.; Junge, H.; Dyson, P. J.; Laurenczy, G.; Ludwig, R.; Beller, M. Science 2011, 333, 1733. https://doi.org/10.1126/science.1206613
- Fukuzumi, S.; Kobayashi, T.; Suenobu, T. J. Am. Chem. Soc. 2010, 132, 1496. https://doi.org/10.1021/ja910349w
- Loges, B.; Boddien, A.; Junge, H.; Beller, M. Angew. Chem. Int. Ed. 2008, 47, 3962. https://doi.org/10.1002/anie.200705972
- Fellay, C.; Dyson, P. J.; Laurenczy, G. Angew. Chem. Int. Ed. 2008, 47, 3966. https://doi.org/10.1002/anie.200800320
- Samjeske, G.; Miki, A.; Ye, S.; Osawa, M. J. Phys. Chem. B, 2006, 110, 16559. https://doi.org/10.1021/jp061891l
- Alexandris, P.; Hatton, T. A. Colloid Surf. 1995, 96, 1. https://doi.org/10.1016/0927-7757(94)03028-X
- Islam, M.; Saha, B.; Das, A. K. J. Mol. Catal A: Chem. 2005, 236, 260. https://doi.org/10.1016/j.molcata.2005.04.019
- Bayen, R.; Islam, M.; Saha, B.; Das, A. K. Carbohydr. Res. 2005, 340, 2163. https://doi.org/10.1016/j.carres.2005.07.002
- Islam, M.; Saha, B.; Das, A. K. Int. J. Chem. Kinet. 2006, 38, 531. https://doi.org/10.1002/kin.20181
- Mandal, J.; Chowdhury, K. M.; Paul, K.; Saha, B. J. Coord. Chem. 2010, 63, 99. https://doi.org/10.1080/00958970903302723
- Islam, M.; Das, A. K. Carbohydr. Res. 2008, 343, 2308. https://doi.org/10.1016/j.carres.2008.05.017
- Islam, M.; Das, A. K. Prog. React. Kinet. Mech. 2008, 33, 219. https://doi.org/10.3184/146867808X339296
- Das, A. K. Inorg. React. Mech. 1999, 1, 161.
- Das, A. K.; Das, M. J. Chem. Soc. Dalton Trans. 1994, 589.
- Meenakshisundaram, S. P.; Gopalakrishnan, M.; Nagarajan, S.; Sarathi, N. Catal. Commun. 2007, 8, 713. https://doi.org/10.1016/j.catcom.2006.08.033
- Figgis, B. N. Introduction to Ligand Fields; Wiley Eastern Limited. New Delhi, India, 1966; p 222.
- Khan, Z.; Ud-Din, K. Transition Met. Chem. 2002, 27, 832. https://doi.org/10.1023/A:1021382505230
- Islam, M.; Saha, B.; Das, A. K. J. Mol. Catal. A: Chem. 2007, 266, 21. https://doi.org/10.1016/j.molcata.2006.10.042
- Jorgensen, C. K. Absorption Spectra and Chemical Bonding in Complexes; Pergamon Press Ltd: Oxford, London, 1964; p 290.
- Saha, B.; Das, M.; Mohanty, R. K.; Das, A. K. J. Chin. Chem. Soc. 2004, 51, 399. https://doi.org/10.1002/jccs.200400062
- Taboada, P.; Attwood, D.; Ruso, J. M.; Garcia, M.; Sarmiento, F.; Mosquera, V. J. Colloid Interface Sci. 1999, 220, 288. https://doi.org/10.1006/jcis.1999.6545
- Akhtar, F.; Hoque, M. A. J. Bangladesh Chem. Soc. 2006, 19, 88.
- Myers, D. Surfaces, Interfaces and Colloids: Principles and Applications; VCH Publishers: New York, 1946.
- Bhattacharya, S.; Kumar, V. P. Langmuir 2005, 21, 71. https://doi.org/10.1021/la048858f
- Zakharova, L.; Valeeva, F.; Zakharov, A.; Ibragimova, A.; Kudryavtseva, L.; Harlampipidi, H. J. Colloid Interf. Sci. 2003, 263, 597. https://doi.org/10.1016/S0021-9797(03)00343-6
- Svensson, R.; Pamedytyte, V.; Juodiatyte, J.; Makuska, R.; Morgenstern, R. Toxicology 200, 168, 251.
- Mandal, J.; Chowdhury, K. M.; Paul, K. K.; Saha, B. Open Catal. J. 2008, 1, 1. https://doi.org/10.2174/1876214X00801010001
- Khan, Z.; Raju, S. M.; Ud-Din, K. Transition Met. Chem. 2003, 28, 881. https://doi.org/10.1023/A:1026303415289
- Meenakshisundaram, S.; Markkandan, R. Transition Met. Chem. 2004, 29, 308. https://doi.org/10.1023/B:TMCH.0000020374.24384.38
- Basu, A.; Saha, R.; Mandal, J.; Ghosh, S. K.; Saha, B. J. Biomed. Sci. Eng. 2010, 3, 735. https://doi.org/10.4236/jbise.2010.37098
Cited by
- Combination of Sodium Dodecylsulfate and 2,2′-Bipyridine for Hundred Fold Rate Enhancement of Chromium(VI) Oxidation of Malonic Acid at Room Temperature: A Greener Approach vol.45, pp.7, 2016, https://doi.org/10.1007/s10953-016-0494-6