DOI QR코드

DOI QR Code

Precise Orbital and Geodetic Parameter Estimation using SLR Observations for ILRS AAC

  • Kim, Young-Rok (Korea Astronomy and Space Science Institute) ;
  • Park, Eunseo (Korea Astronomy and Space Science Institute) ;
  • Oh, Hyungjik Jay (Astrodynamics and Control Lab., Department of Astronomy, Yonsei University) ;
  • Park, Sang-Young (Astrodynamics and Control Lab., Department of Astronomy, Yonsei University) ;
  • Lim, Hyung-Chul (Korea Astronomy and Space Science Institute) ;
  • Park, Chandeok (Astrodynamics and Control Lab., Department of Astronomy, Yonsei University)
  • 투고 : 2013.08.07
  • 심사 : 2013.11.15
  • 발행 : 2013.12.15

초록

In this study, we present results of precise orbital geodetic parameter estimation using satellite laser ranging (SLR) observations for the International Laser Ranging Service (ILRS) associate analysis center (AAC). Using normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2 in SLR consolidated laser ranging data format, the NASA/GSFC GEODYN II and SOLVE software programs were utilized for precise orbit determination (POD) and finding solutions of a terrestrial reference frame (TRF) and Earth orientation parameters (EOPs). For POD, a weekly-based orbit determination strategy was employed to process SLR observations taken from 20 weeks in 2013. For solutions of TRF and EOPs, loosely constrained scheme was used to integrate POD results of four geodetic SLR satellites. The coordinates of 11 ILRS core sites were determined and daily polar motion and polar motion rates were estimated. The root mean square (RMS) value of post-fit residuals was used for orbit quality assessment, and both the stability of TRF and the precision of EOPs by external comparison were analyzed for verification of our solutions. Results of post-fit residuals show that the RMS of the orbits of LAGEOS-1 and LAGEOS-2 are 1.20 and 1.12 cm, and those of ETALON-1 and ETALON-2 are 1.02 and 1.11 cm, respectively. The stability analysis of TRF shows that the mean value of 3D stability of the coordinates of 11 ILRS core sites is 7.0 mm. An external comparison, with respect to International Earth rotation and Reference systems Service (IERS) 08 C04 results, shows that standard deviations of polar motion $X_P$ and $Y_P$ are 0.754 milliarcseconds (mas) and 0.576 mas, respectively. Our results of precise orbital and geodetic parameter estimation are reasonable and help advance research at ILRS AAC.

키워드

참고문헌

  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C, ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters, JGR, 112, B09401 (2007). http://dx.doi.org/10.1029/2007JB004949
  2. Altamimi Z, Collilieux X, Metivier L, ITRF2008: an improved solution of the international terrestrial reference frame, JGeod, 85, 457-473 (2011). http://dx.doi.org/10.1007/s00190-011-0444-4
  3. Bianco G, Devoti R, Luceri V, Combination of loosely constrained solutions, in Proceedings of the IERS Workshop on Combination Research and Global Geophysical Fluids, Munich, Germany, 18-21 Nov 2003.
  4. Blewitt G, GPS data processing methodology: from theory to applications, in GPS for Geodesy (Springer-Verslag, New Yrok, 1998), 231-270.
  5. Coulot D, Pollet A, Collilieux X, Berio P, Global optimization of core station networks for space geodesy: application to the referencing of the SLR EOP with respect to ITRF, JGeod, 84, 31-50 (2010). http://dx.doi.org/10.1007/ s00190-009-0342-1
  6. Davies P, Blewitt G, Methodology for global geodetic time series estimation: a new tool for geodynamics, JGRB, 105, 11083-11100 (2000). https://doi.org/10.1029/2000JB900004
  7. Heflin M, Bertiger W, Blewitt G, Freedman A, Hurst K, et al., Global geodesy using GPS without fiducial sites, GeoRL, 19, 131-134 (1992). http://dx.doi.org/10.1029/91GL02933
  8. Jacchia LG, Revised static models of the thermosphere and exosphere with empirical temperature profiles, SAO Special Report No. 332 (Smithsonian Institution, Astrophysical Observatory, Cambridge 1971).
  9. Jo JH, Park IK, Lim H-C, Seo Y-K, Yim H-S, et al., The design concept of the first mobile satellite laser ranging system (ARGO-M) in Korea, JASS, 28, 93-102 (2011). http:// dx.doi.org/10.5140/JASS.2011.28.1.093
  10. Kim Y-R, Park S-Y, Park E-S, Lim H-C, Preliminary products of precise orbit determination using satellite laser ranging observations for ILRS AAC, JASS, 29, 275-285 (2012). http://dx.doi.org/10.5140/JASS.2012.29.3.275
  11. Lejba P, Schillak S, Determination of station positions and velocities from laser ranging observations to Ajisai, Starlette and Stella satellites, AdSpR, 47, 654-662 (2011). http://dx.doi.org/10.1016/j.asr.2010.10.013
  12. Mathews PM, Herring TA, Buffett BA, Modeling of nutation and precession: new nutation series for nonrigid Earth and insights into the Earth's interior, JGR, 107, 2068 (2002). http://dx.doi.org/10.1029/2001JB000390
  13. McCarthy DD, Petit G, IERS conventions 2003, IERS Technical Note, No. 32 (2004).
  14. Mendes VB, Prates G, Pavlis EC, Pavlis DE, Langley RB, Improved mapping functions for atmospheric refraction correction in SLR, GeoRL, 29, 1414 (2002). http://dx.doi.org/10.1029/2001GL014394
  15. Mendes VB, Pavlis EC, High-accuracy zenith delay prediction at optical wavelengths, GeoRL, 31, L14602 (2004). http://dx.doi.org/10.1029/2004GL020308
  16. Noomen R, Precise orbit determination with SLR: setting the standard, SGeo, 22, 473-480 (2001).
  17. Noll CE, The crustal dynamics data information system: a resource to support scientific analysis using space geodesy, AdSpR, 45, 1421-1440 (2010). http://dx.doi. org/10.1016/j.asr.2010.01.018
  18. Park E, Yu S-Y, Lim H-C, Bang S-C, Seo Y-K, et al., Status and progress of ARGO-M system development, Publications of the Korean Astronomical Society, 27, 49-59 (2012). http://dx.doi.org/10.5303/PKAS.2012.27.3.049
  19. Pavlis DE, Luo S, Dahiroc P, GEODYN II system description, Hughes STX Contractor Report, Greenbelt, Maryland, July (1998).
  20. Pavlis EC, The JCET/GSFC satellite laser ranging TRF and EOP series, in Proceedings of the IERS Workshop on the Implementation of the New IAU Resolutions, Paris, France, 18-19 Apr 2002, 109-110.
  21. Pearlman MR, Degnan JJ, Bosworth JM, The international laser ranging service, AdSpR, 30, 135-143 (2002). http:// dx.doi.org/10.1016/S0273-1177(02)00277-6
  22. Ray RD, A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2, NASA Goddard Space Flight Center technical memorandum, NASA/TM-1999-209478 (1999).
  23. Schillak S, Determination of the SLR stations coordinates in 1994-2008, Reports on Geodesy, 92, 227-236 (2012).
  24. Sosnica K, Thaller D, Jaggi A, Dach R, Beutler G, Sensitivity of LAGEOS orbits to global gravity field models, Artificial Satellites, 47, 47-65 (2012). http://dx.doi. org/10.2478/v10018-012-0013-y
  25. Standish EM, Newhall XX, Williams JG, Folkner WM, JPL planetary and Lunar ephemerides, DE403/LE403, JPL IOM 31410-127 (1995).
  26. Tapley BD, Ries JC, Bettadpur S, Chambers D, Cheng M, et al., GGM02 - an improved Earth gravity field model from GRACE, JGeod, 79, 467-478 (2005). http://dx.doi. org/10.1007/s00190-005-0480-z
  27. Ullman RE, SOLVE program: user's guide 2010, Raytheon STX Contractor Report, Contract NAS5-31760, Greenbelt, Maryland, February (2010).

피인용 문헌

  1. Orbit Determination Using SLR Data for STSAT-2C: Short-arc Analysis vol.32, pp.3, 2015, https://doi.org/10.5140/JASS.2015.32.3.189