DOI QR코드

DOI QR Code

Ultrastructure of the flagellar apparatus in Rhinomonas reticulata var. atrorosea (Cryptophyceae, Cryptophyta)

  • Nam, Seung Won (Department of Biology, Chungnam National University) ;
  • Go, Donghee (Department of Biology, Chungnam National University) ;
  • Son, Misun (Yeongsan River Environmental Research Center) ;
  • Shin, Woongghi (Department of Biology, Chungnam National University)
  • Received : 2013.10.23
  • Accepted : 2013.11.30
  • Published : 2013.12.15

Abstract

Rhinomonas reticulata var. atrorosea G. Novarino is a photosynthetic marine flagellate that is known to have typical characteristics of cryptomonads. We examined the flagellar apparatus of R. reticulata var. atrorosea by transmission electron microscopy. The major components of the flagellar apparatus of R. reticulata var. atrorosea consisted of four types of microtubular roots (1r, 2r, 3r, and mr), a non-keeled rhizostyle (Rhs), mitochondrion-associated lamella (ML), two connections between basal bodies, a striated fibrous root (SR) and a striated fiber-associated microtubular root (SRm). Four types of microtubular roots originated near the ventral basal body and extended toward the left side of the basal bodies. The non-keeled Rhs originated at the Rhs-associated striated fiber, which was located between two basal bodies and extended into the middle of the cell. The ML was a plate-like fibrous structure associated with mitochondria and originating from a Rhs-associated fiber. It split into two parts and extended toward the dorsal-posterior of the cell to a mitochondrion. The SR and SRm extended parallel to the anterior lobe of the cell. The overall configuration of the flagellar apparatus in R. reticulata var. atrorosea was similar to the previously reported descriptions of those of Cryptomonas paramecium, C. pyrenoidifera, C. ovata, Hanusia phi, Guillardia theta, and Proteomonas sulcata. However, the flagellar apparatus system of R. reticulata var. atrorosea was more complex than those of other cryptomonad species due to the presence of an additional microtubular root and other distinctive features, such as a rhizostyle-associated striated fiber and large ML.

Keywords

References

  1. Clay, B. L., Kugrens, P. & Lee, R. E. 1999. A revised classification of Cryptophyta. Bot. J. Linn. Soc. 131:131-151. https://doi.org/10.1111/j.1095-8339.1999.tb01845.x
  2. Deane, J. A., Stachan, I. M., Saunders, G. W., Hill, D. R. A. & McFadden, G. I. 2002. Cryptomonad evolution: nuclear 18S rDNA phylogeny versus cell morphology and pigmentation. J. Phycol. 38:1236-1244. https://doi.org/10.1046/j.1529-8817.2002.01250.x
  3. Gillott, M. A. & Gibbs, S. P. 1983. Comparison of the flagellar rootlets and periplast in two marine cryptomonads. Can. J. Bot. 61:1964-1978. https://doi.org/10.1139/b83-212
  4. Grain, J., Mignot, J. -P. & Puytorac, P. 1988. Ultrastructures and evolutionary modalities of flagellar and ciliary systems in protists. Biol. Cell. 63:219-237. https://doi.org/10.1016/0248-4900(88)90060-3
  5. Hill, D. R. A. 1991. A revised circumscription of Cryptomonas (Cryptophyceae) based on examination of Australian strains. Phycologia 30:170-188. https://doi.org/10.2216/i0031-8884-30-2-170.1
  6. Hill, D. R. A. & Wetherbee, R. 1986. Proteomonas sulcata gen. et sp. nov. (Cryptophyceae), a cryptomonad with two morphologically distinct and alternating forms. Phycologia 25:521-543. https://doi.org/10.2216/i0031-8884-25-4-521.1
  7. Hill, D. R. A. & Wetherbee, R. 1988. The structure and taxonomy of Rhinomonas pauca gen. et sp. nov. (Cryptophyceae). Phycologia 27:355-365. https://doi.org/10.2216/i0031-8884-27-3-355.1
  8. Hoef-Emden, K., Marin, B. & Melkonian, M. 2002. Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. J. Mol. Evol. 55:161-179. https://doi.org/10.1007/s00239-002-2313-5
  9. Klaveness, D. 1981. Rhodomonas lacustris (Pascher & Ruttner) Javornicky (Cryptomonadida): ultrastructure of the vegetative cell. J. Protozool. 28:83-90. https://doi.org/10.1111/j.1550-7408.1981.tb02809.x
  10. Kugrens, P., Clay, B. L. & Lee, R. E. 1999. Ultrastructure and systematics of two new freshwater red cryptomonads, Storeatula rhinosa sp. nov. and Pyrenomonas ovalis sp. nov. J. Phycol. 35:1079-1089. https://doi.org/10.1046/j.1529-8817.1999.3551079.x
  11. Laza-Martinez, A. 2012. Urgorri complanatus gen. et sp. nov. (Cryptophyceae), a red-tide-forming species in brackish waters. J. Phycol. 48:423-435. https://doi.org/10.1111/j.1529-8817.2012.01130.x
  12. Laza-Martinez, A., Arluzea, J., Miguel, I. & Orive, E. 2012. Morphological and molecular characterization of Teleaulax gracilis sp. nov. and T. minuta sp. nov. (Cryptophyceae). Phycologia 51:649-661. https://doi.org/10.2216/11-044.1
  13. Mattox, K. R. & Stewart, K. D. 1984. Classification of the green algae: a concept based on comparative cytology. In Irvine, D. E. G. & John, D. M. (Eds.) Systematics of the Green Algae. Academic Press, London, pp. 29-72.
  14. Moestrup, O. 1982. Flagellar structure in algae: a review, with new observations particularly on the Chrysophyceae, Phaeophyceae (Fucophyceae), Euglenophyceae, and Reckertia. Phycologia 21:427-528. https://doi.org/10.2216/i0031-8884-21-4-427.1
  15. Nam, S. W., Shin, W., Coats, D. W., Park, J. W. & Yih, W. 2012. Ultrastructure of the oral apparatus of Mesodinium rubrum from Korea. J. Eukaryot. Microbiol. 59:625-636. https://doi.org/10.1111/j.1550-7408.2012.00643.x
  16. Novarino, G. 1991. Observations on Rhinomonas reticulata comb. nov. and R. reticulata var. eleniana var. nov. (Cryptophyceae), with comments on the genera Pyrenomonas and Rhodomonas. Nord. J. Bot. 11:243-252. https://doi.org/10.1111/j.1756-1051.1991.tb01826.x
  17. Novarino, G. 2003. A companion to the identification of cryptomonad flagellates (Cryptophyceae = Cryptomonadea). Hydrobiologia 502:225-270. https://doi.org/10.1023/B:HYDR.0000004284.12535.25
  18. Novarino, G. & Lucas, I. A. N. 1993. Some proposals for a new classification system of the Cryptophyceae. Bot. J. Linn. Soc. 111:3-21. https://doi.org/10.1111/j.1095-8339.1993.tb01886.x
  19. Oakley, B. R. & Dodge, J. D. 1976. The ultrastructure of mitosis in Chroomonas salina (Cryptophyceae). Protoplasma 88:241-254. https://doi.org/10.1007/BF01283249
  20. O'Kelly, C. J. & Floyd, G. L. 1984. Correlations among patterns of sporangial structure and development, life histories, and ultrastructural features in the Ulvophyceae. In Irvine, D. E. G. & John, D. M. (Eds.) Systematics of the Green Algae. Academic Press, London, pp. 121-156.
  21. Perasso, L., Hill, D. R. A. & Wetherbee, R. 1992. Transformation and development of the flagellar apparatus of Cryptomonas ovata (Cryptophyceae) during cell division. Protoplasma 170:53-67. https://doi.org/10.1007/BF01384457
  22. Reynolds, E. S. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17:208-212. https://doi.org/10.1083/jcb.17.1.208
  23. Roberts, K. R. 1984. Structure and significance of the cryptomonad flagellar apparatus. I. Cryptomonas ovata (Cryptophyta). J. Phycol. 20:590-599. https://doi.org/10.1111/j.0022-3646.1984.00590.x
  24. Roberts, K. R., Stewart, K. D. & Mattox, K. R. 1981. The flagellar apparatus of Chilomonas paramecium (Cryptophyceae) and its comparison with certain zooflagellates. J. Phycol. 17:159-167. https://doi.org/10.1111/j.1529-8817.1981.tb00834.x
  25. Santore, U. J. 1982. Comparative ultrastructure of two members of the Cryptophyceae assigned to the genus Chroomonas with comments on their taxonomy. Arch. Protistenkd. 125:5-29. https://doi.org/10.1016/S0003-9365(82)80002-X
  26. Santore, U. J. 1984. Some aspects of taxonomy in the Crypto-phyceae. New Phytol. 98:627-646. https://doi.org/10.1111/j.1469-8137.1984.tb04153.x
  27. Shin, W., Brosnan, S. & Triemer, R. E. 2002. Are cytoplasmic pockets (MTR/pocket) present in all photosynthetic euglenoid genera? J. Phycol. 38:790-799. https://doi.org/10.1046/j.1529-8817.2002.01208.x
  28. Stewart, K. D. & Mattox, K. R. 1978. Structural evolution in the flagellated cells green algae and land plants. Biosystems 10:145-152. https://doi.org/10.1016/0303-2647(78)90036-9
  29. Tanifuji, G., Onodera, N. T. & Hara, Y. 2010. Nucleomorph genome diversity and its phylogenetic implications in cryptomonad algae. Phycol. Res. 58:230-237. https://doi.org/10.1111/j.1440-1835.2010.00580.x
  30. Von der Heyden, S., Chao, E. E. & Cavalier-Smith, T. 2004. Genetic diversity of goniomonads: an ancient divergence between marine and freshwater species. Eur. J. Phycol. 39:343-350. https://doi.org/10.1080/09670260400005567

Cited by

  1. Phylogeny, morphology, and physiology ofMicractiniumstrains isolated from shallow ephemeral freshwater in Antarctica vol.63, pp.3, 2015, https://doi.org/10.1111/pre.12097
  2. Automatized Freeze Substitution of Algae Accelerated by a Novel Agitation Module vol.167, pp.4, 2016, https://doi.org/10.1016/j.protis.2016.06.002
  3. Ultrastructure of the flagellar apparatus in cryptomorphic Cryptomonas curvata (Cryptophyceae) with an emphasis on taxonomic and phylogenetic implications vol.31, pp.2, 2016, https://doi.org/10.4490/algae.2016.31.6.13
  4. Ultrastructure of the flagellar apparatus in Rhodomonas salina (Cryptophyceae, Cryptophyta) vol.38, pp.2, 2020, https://doi.org/10.11626/kjeb.2020.38.2.278
  5. Pyrenoids: CO2-fixing phase separated liquid organelles vol.1868, pp.5, 2013, https://doi.org/10.1016/j.bbamcr.2021.118949