DOI QR코드

DOI QR Code

Taxonomy and phylogeny of the genus Cryptomonas (Cryptophyceae, Cryptophyta) from Korea

  • Choi, Bomi (Department of Biology, Chungnam National University) ;
  • Son, Misun (Yeongsan River Environment Research Center) ;
  • Kim, Jong Im (Department of Biology, Chungnam National University) ;
  • Shin, Woongghi (Department of Biology, Chungnam National University)
  • Received : 2013.08.20
  • Accepted : 2013.12.05
  • Published : 2013.12.15

Abstract

The genus Cryptomonas is easily recognized by having two flagella, green brownish color, and a swaying behavior. They have relatively simple morphology, and limited diagnostic characters, which present a major difficulty in differentiating between species of the genus. To understand species delineation and phylogenetic relationships among Cryptomonas species, the nuclear-encoded internal transcribed spacer 2 (ITS2), partial large subunit (LSU) and small subunit ribosomal DNA (rDNA), and chloroplast-encoded psbA and LSU rDNA sequences were determined and used for phylogenetic analyses, using Bayesian and maximum likelihood methods. In addition, nuclear-encoded ITS2 sequences were predicted to secondary structures, and were used to determine nine species and four unidentified species from 47 strains. Sequences of helix I, II, and IIIb in ITS2 secondary structure were very useful for the identification of Cryptomonas species. However, the helix IV was the most variable region across species in alignment. The phylogenetic tree showed that fourteen species were monophyletic. However, some strains of C. obovata had chloroplasts with pyrenoid while others were without pyrenoid, which used as a key character in few species. Therefore, classification systems depending solely on morphological characters are inadequate, and require the use of molecular data.

Keywords

References

  1. Bourelly, P. 1970. Les algues d'eau douce: initiation a la systematique. Tome III: Les algues blues et rouges. Les Eugleniens, Peridinienset Cryptomonadines. Editions N. Boubee & Cie, Paris, 512 pp.
  2. Brett, S. J. & Wetherbee, R. 1986. A comparative study of periplast structure in Cryptomonas cryophila and C. ovata (Cryptophyceae). Protoplasma 131:23-31. https://doi.org/10.1007/BF01281684
  3. Butcher, R. W. 1967. An introductory account of the smaller algae of British coastal waters. Part IV: Cryptophyceae. Fishery Investigations, Series IV. Ministry of Agriculture, Fisheries and Food, Her Majesty's Stationary Office, London, 54 pp.
  4. Clay, B. L., Kugrens, P. & Lee, R. E. 1999. A revised classification of the Cryptophyta. Bot. J. Linn. Soc. 131:131-151. https://doi.org/10.1111/j.1095-8339.1999.tb01845.x
  5. Deane, J. A., Strachan, I. M., Saunders, G. W., Hill, D. R. A. & McFadden, G. I. 2002. Cryptomonad evolution: nuclear 18S rDNA phylogeny versus cell morphology and pigmentation. J. Phycol. 38:1236-1244. https://doi.org/10.1046/j.1529-8817.2002.01250.x
  6. Dujardin, F. 1841. Histoire naturelle des Zoophytes. Infusoires, comprenant la physiologie et la classification de ces Animaux, et la maniere de les etudier a l'aide du microscope. Librairie Encyclopedique de Roret, Paris, 295 pp.
  7. Ehrenberg, C. G. 1831. Symbolae physicae seu icones et descriptiones animalium evertebratorum sepositis insectis quae ex itinere per Africanumborealem et Asiam occidentalem Friderici Guilelmi Hemprich et Christiani Godofredi Ehrenberg medicinae et chirurgiae doctorum studio novae aut illustratae redierunt. Mittler, Berlin, pp. 1-2.
  8. Ehrenberg, C. G. 1832. Uber die Entwickelung und Lebensdauer der Infusionsthiere; nebst ferneren Beiträgen zu einer Vergleichung ihrer organischen Systeme. Abh. K. Akad. Wiss. Berl. Phys. Kl. 1831:1-154.
  9. Ehrenberg, C. G. 1838. Die Infusionsthierschen als volkommene Organismen. Ein Blick in das tiefere organische Leben der Natur. Leopold Voss, Leipzig, 548 pp.
  10. Faust, M. A. 1974. Structure of the periplast Cryptomonas ovata var. palustris. J. Phycol. 10:121-124.
  11. Guillard, R. R. L. 1975. Culture of phytoplankton for feeding marine invertebrates. In Smith, W. L. & Chanley, M. H. (Eds.) Culture of Marine Invertebrate Animals. Plenum Press, New York, pp. 26-60.
  12. Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239. https://doi.org/10.1139/m62-029
  13. Hill, D. R. A. 1991. A revised circumscription of Cryptomonas (Cryptophyceae) based on examination of Australian strains. Phycologia 30:170-188. https://doi.org/10.2216/i0031-8884-30-2-170.1
  14. Hill, D. R. A. & Rowan, K. S. 1989. The biliproteins of the Cryptophyceae. Phycologia 28:455-463. https://doi.org/10.2216/i0031-8884-28-4-455.1
  15. Hoef-Emden, K. 2007. Revision of the genus Cryptomonas (Cryptophyceae) ІІ: incongruences between the classical morphospecies concept and molecular phylogeny in smaller pyrenoid-less cells. Phycologia 46:402-428. https://doi.org/10.2216/06-83.1
  16. Hoef-Emden, K., Marin, B. & Melkonian, M. 2002. Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. J. Mol. Evol. 55:161-179. https://doi.org/10.1007/s00239-002-2313-5
  17. Hoef-Emden, K. & Melkonian, M. 2003. Revision of the genus Cryptomonas (Cryptophyceae): a combination of molecular phylogeny and morphology provides insights into a long-hidden dimorphism. Protist 154:371-409. https://doi.org/10.1078/143446103322454130
  18. Huber-Pestalozzi, G. 1950. Das Phytoplankton des Susswassers. 3. Teil. Cryptophyceen, Chloromonadinen, Peridineen. E. Schweizerbart'sche Verlagsbuchhandlung (Erwin Nagele), Stuttgart, 310 pp.
  19. Huelsenbeck, J. P. & Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754-755. https://doi.org/10.1093/bioinformatics/17.8.754
  20. Javornicky, P. 2003. Taxonomic notes on some freshwater planktonic Cryptophyceae based on light microscopy. Hydrobiologia 502:271-283. https://doi.org/10.1023/B:HYDR.0000004285.50172.1f
  21. Kim, J. -H., Boo, S. M. & Shin, W. 2007. Two freshwater cryptomonads new to Korea: Cryptomonas marssonii and C. pyrenoidifera. Algae 22:147-152. https://doi.org/10.4490/ALGAE.2007.22.3.147
  22. Marin, B., Klingberg, M. & Melkonian, M. 1998. Phylogenetic relationships among the Cryptophyta: analyses of nuclear-encoded SSU rRNA sequences support the monophyly of extant plastid-containing lineages. Protist 149:265-276. https://doi.org/10.1016/S1434-4610(98)70033-1
  23. Mathews, D. H. 2004. Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA 10:1178-1190. https://doi.org/10.1261/rna.7650904
  24. Pascher, A. 1913. Die Susswasserflora Deutschlands, Osterreichs und der Schweiz. Heft 2: Flagellatae II. Chrysomonadinae, Eugleninae, Chloromonadinae und gefarbte Flagellaten unsicherer Stellung. Gustav Fischer, Jena, pp. 96-114.
  25. Posada, D. & Crandall, K. A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817-818. https://doi.org/10.1093/bioinformatics/14.9.817
  26. Pringsheim, E. G. 1944. Some aspects of taxonomy in the Cryptophyceae. New Phytol. 43:143-150. https://doi.org/10.1111/j.1469-8137.1944.tb05009.x
  27. Pringsheim, E. G. 1968. Zur Kenntnis der Cryptomonaden des Susswassers. Nova Hedwigia 16:367-401.
  28. Schiller, J. 1925. Die planktontischen Vegetationen des adriatischen Meeres. B. Chrysomonadina, Heterokontae, Cryptomonadina, Eugleninae, Volvocales. I. Systematischer Teil. Arch. Protistenkd. 53:59-123.
  29. Schiller, J. 1929. Neue Chryso- und Cryptomonaden aus Altwassern der Donau bei Wien. Arch. Protistenkd. 66:436-458.
  30. Schiller, J. 1957. Untersuchungen an den planktischen Protophyten des Neusiedlersees 1950-1954. II. Teil. Burgenlandisches Landesmuseum, Eisenstadt, 44 pp.
  31. Schultz, J., Maisel, S., Gerlach, D., Muller, T. & Wolf, M. 2005. A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the eukaryota. RNA 11:361-364. https://doi.org/10.1261/rna.7204505
  32. Skuja, H. 1939. Beitrag zur Algenflora Lettlands. Vol. 2. Acta Horti Bot. Univ. Latv. 11/12:41-169.
  33. Skuja, H. 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Sweden. Symb. Bot. Ups. 9:1-399.
  34. Skuja, H. 1956. Taxonomische und biologische Studien über das Phytoplankton schwedischer Binnengewasser. Nova Acta Regiae Soc. Sci. Ups. Ser. IV 16:1-404.
  35. Smith, S. W., Overbeek, R., Woese, C. R., Gilbert, W. & Gillevet, P. M. 1994. The genetic data environment and expandable GUI for multiple sequence analysis. Comput. Appl. Biosci. 10:671-675.
  36. Son, M. S. 2009. Taxonomic study on the genus Cryptomonas from Korea. Chungnam National University Press, Daejeon, 54 pp.
  37. Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  38. Starmach, K. 1974. Flora Slodkowodna Polski, Tom 4. Cryptophyceae, Dinophyceae, Raphidophyceae. Polska Akademia Nauk Instytut Botaniki, Warsaw, 520 pp
  39. Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31:3406-3415. https://doi.org/10.1093/nar/gkg595

Cited by

  1. Ultrastructure of the flagellar apparatus in cryptomorphic Cryptomonas curvata (Cryptophyceae) with an emphasis on taxonomic and phylogenetic implications vol.31, pp.2, 2016, https://doi.org/10.4490/algae.2016.31.6.13
  2. The effect of phosphorus removal from sewage on the plankton community in a hypertrophic reservoir vol.40, pp.1, 2016, https://doi.org/10.1186/s41610-016-0005-0
  3. Identification of species and genotypic compositions of Cryptomonas (Cryptophyceae) populations in the eutrophic Lake Hira, Japan, using single-cell PCR vol.49, pp.3, 2015, https://doi.org/10.1007/s10452-015-9520-9
  4. 온천천 하류 적조 원인생물의 동정 및 발생 특성 vol.34, pp.3, 2013, https://doi.org/10.15681/kswe.2018.34.3.285
  5. Annual Protist Community Dynamics in a Freshwater Ecosystem Undergoing Contrasted Climatic Conditions: The Saint-Charles River (Canada) vol.10, pp.None, 2013, https://doi.org/10.3389/fmicb.2019.02359
  6. Intraspecific variations in macronutrient, amino acid, and fatty acid composition of mass-cultured Teleaulax amphioxeia (Cryptophyceae) strains vol.34, pp.2, 2013, https://doi.org/10.4490/algae.2019.34.6.4
  7. Plastid-encoded gene comparison reveals usefulness of atpB, psaA, and rbcL for identification and phylogeny of plastid-containing cryptophyte clades vol.59, pp.2, 2013, https://doi.org/10.1080/00318884.2019.1709145
  8. Taxonomic studies of Cryptomonas lundii clade (Cryptophyta: Cryptophyceae) with description of a new species from Vietnam vol.20, pp.2, 2013, https://doi.org/10.5507/fot.2020.004
  9. Molecular Phylogeny and Taxonomy of the Genus Spumella (Chrysophyceae) Based on Morphological and Molecular Evidence vol.12, pp.None, 2013, https://doi.org/10.3389/fpls.2021.758067
  10. Metabarcoding analysis of harmful algal bloom species in the Changjiang Estuary, China vol.782, pp.None, 2013, https://doi.org/10.1016/j.scitotenv.2021.146823
  11. Ramlibacter algicola sp. nov., isolated from a freshwater alga Cryptomonas obovoidea vol.71, pp.9, 2013, https://doi.org/10.1099/ijsem.0.005010
  12. Semi-automated classification of colonial Microcystis by FlowCAM imaging flow cytometry in mesocosm experiment reveals high heterogeneity during seasonal bloom vol.11, pp.1, 2013, https://doi.org/10.1038/s41598-021-88661-2