DOI QR코드

DOI QR Code

3차원적층조형법으로 제조된 타이타늄 금속 다공체의 기공구조 및 기계적 특성에 관한 연구

A Study on Pore Structure and Mechanical Properties of Porous Titanium Fabricated by Three-dimensional Layer Manufacturing Process

  • 손병휘 (재료연구소 특수합금연구그룹) ;
  • 홍재근 (재료연구소 특수합금연구그룹) ;
  • 현용택 (재료연구소 특수합금연구그룹) ;
  • 배석천 (계명대학교 신소재공학과) ;
  • 김승언 (재료연구소 특수합금연구그룹)
  • Son, Byoung-hwi (Special Alloys Group, Korea Institute of Materials Science, (KIMS)) ;
  • Hong, Jae-geun (Special Alloys Group, Korea Institute of Materials Science, (KIMS)) ;
  • Hyun, Yong-taek (Special Alloys Group, Korea Institute of Materials Science, (KIMS)) ;
  • Bae, Seok-choun (Dept. of Advanced Materials Engineering, Keimyung University) ;
  • Kim, Seung-eon (Special Alloys Group, Korea Institute of Materials Science, (KIMS))
  • 투고 : 2011.09.28
  • 발행 : 2012.02.25

초록

This study was performed to fabricate porous titanium foam by three-dimensional layer manufacturing process, and to evaluate the porosities, compressive stress, Young's modulus and fracture pattern. Porous titanium foam was made of CP(Commercial Pure) titanium powder (${\leq}5{\mu}m$). Total porosities of titanium foam were in the range of 55-68%. Pore size distribution was $200-440{\mu}m$ for coarse pores, $50-100{\mu}m$ for intermediate pores and $5-10{\mu}m$ for fine pores. Compression elastic modulus and compression stress were decreased with increasing porosity. Young's modulus ranged from 1.04-5.62 GPa and maximum stress ranged from 20-241 MPa. Regarding the mechanical properties, 3D(Three Demensional) porous titanium fabricated layer manufacturing is a promising material for human bone replacement.

키워드

참고문헌

  1. G. Ryan and A. Pandit, Dimitrios Panagiotis Apatsidis, Biomaterials 27, 2652 (2006).
  2. J. Banhart, Progress in Mater. Sci. 46, 618 (2001).
  3. S. H. Hong, Kor. Adv. Inst. Sci. Tech. 2-3 (2005).
  4. I. H. Oh, N. Nomura, N. Masahashi, and S. Hanada, Scr. Mater. 49, 1197 (2003). https://doi.org/10.1016/j.scriptamat.2003.08.018
  5. L. P. Lefebvre, J. Banhart, and D. C. Dunand, Adv. Eng. Mater. 10, 781 (2008).
  6. X. Yan and P. Gu, Comtwier-AidedLksian 26, 307 (1996).
  7. J. P. Li, J. R. de Wijn, C. A. van Blitterswijk, and K. de Groot, Biomaterials 27, 1223 (2006). https://doi.org/10.1016/j.biomaterials.2005.08.033
  8. J. P. Li, P. Habibovic, M. van den Doel, C. E. Wilson, J. R. de Wijn, Clemens A. van Blitterswijk, and K. de Groota, Biomaterials 28, 2817 (2007).
  9. J. M. Sobral, S. G. Caridade, R. A. Sousa, J. F. Mano, and R. L. Reis, Acta Biomater. 7, 1009 (2011). https://doi.org/10.1016/j.actbio.2010.11.003