Effects of Plant Activators on Germination of K3PO4-primed Seeds of Pepper (Capsicum annuum L.)

생리활성물질 처리가 priming 고추종자의 발아에 미치는 영향

  • Hwang, Mi-Ran (Department of Horticulture, Gyeongsang National Univ.) ;
  • Kim, Hui-Eun (Department of Horticulture, Gyeongsang National Univ.) ;
  • Choi, Hyo-Gil (Protected Horticulture Research Station, NIHHS, RDA) ;
  • Kwon, Joon-Kook (Protected Horticulture Research Station, NIHHS, RDA) ;
  • Kang, Nam-Jun (Department of Horticulture, Gyeongsang National Univ., Insti. of Agric. & Life Sci., Gyeongsang National Univ.)
  • 황미란 (경상대학교 원예학과) ;
  • 김희은 (경상대학교 원예학과) ;
  • 최효길 (국립원예특작과학원 시설원예시험장) ;
  • 권준국 (국립원예특작과학원 시설원예시험장) ;
  • 강남준 (경상대학교 원예학과, 경상대학교 농업생명과학연구원)
  • Received : 2012.07.19
  • Accepted : 2012.08.28
  • Published : 2012.08.30

Abstract

Effects of plant activators on germination of primed pepper seeds were investigated. The percent germination and T50 of primed seeds with 0.1mM ASM were 98% and 0.96 day at the 7 days after seeding, respectively. However, the germination of primed seeds with 0.5mM ASM were suppressed as 17% at the 7 days after seeding. The percent germination of primed seeds with 0.01mM INA were 90% at the 2 days after seeding. However, those of primed seeds by 0.1mM INA were increased as 90% at the 5 days after seeding. The percent germination of primed seeds was not change by treatment of the BABA and JA.

생리활성물질 처리가 priming 고추종자의 발아에 미치는 영향을 분석한 결과, ASM 0.1 mM 처리에서는 치상후 7일째 98%의 발아율을 보였으며 T50은 0.96일이였다. 그러나 ASM 0.5 mM 처리에서는 17%의 낮은 발아율을 보여 발아가 억제되었다. INA 0.01 mM 처리에서는 치상 후 2일째에 90% 이상의 발아율을 보였지만, 0.1 mM 처리에서는 치상 후 5일째에 90%의 발아율을 보였다. T50은 INA 0.01과 0.1 mM 처리에서 각각 0.65와 6.03일로 나타났다. BABA와 JA 처리는 priming에 의한 발아촉진 효과에 영향을 미치지 않았다.

Keywords

Acknowledgement

Supported by : 농림수산식품기술기획평가원

References

  1. Bokshi, A. I., S. C. Morris, and B.J. Deverall. 2003. Effects of benzothiadiazole and acetylsalicylic acid on $\beta$-1,3-glucanase activity and disease resistance in potato. Plant Pathology. 52: 22-27. https://doi.org/10.1046/j.1365-3059.2003.00792.x
  2. Cohen, Y. and U. Gisi. 1994. Systemic translocation of $^{14}C$-DL-3-aminobutyric acid in tomato plants in relation to induced resistance against Phytophthora infestans. Physiol. Mol. Plant Pathol. 45: 441-446. https://doi.org/10.1016/S0885-5765(05)80041-4
  3. Cohen, Y., T. Niderman, E. Mosinger, and R. Fluhr. 1994. $\beta$-aminobutyric acid induces the accumulation of pathogenesis-related proteins in tomato (Lycopersicon esculentum L.) plants and resistance to late blight infection caused by Phytophthora infestans. Plant Physiol. 104: 59-66.
  4. Coolbear, P., A. J. Newell, and J. A. Bryant. 1987. An evaluation of the potential of low temperature presowing treatments of tomato seeds as a means of improving germination performance. Ann. Appl. Bio. 110: 185-194. https://doi.org/10.1111/j.1744-7348.1987.tb03246.x
  5. Cools, H. J. and H. Ishii. 2002. Pre-treatment of cucumber plants with acibenzolar-S-methyl systemically primes a phenylalanine ammonia lyase gene (PAL1) for enhanced expression upon attack with a pathogenic fungus. Physiol. Mol. Plant Pathol. 61: 273-280. https://doi.org/10.1006/pmpp.2003.0439
  6. Creelman R. A. and J. E. Mullet. 1997. Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48: 355-81. https://doi.org/10.1146/annurev.arplant.48.1.355
  7. Heydecker, W. 1974. Germination of an idea : The priming of seeds. University of Nottingham School of Agriculture Report: 50-57.
  8. Jeong, Y. O. 1994. Effect of seed priming and physiological mechanisms involved in earlier germination on primed pepper (Capsicum annum L.) seeds. Ph D. Thesis. Gyeongsang National University, Korea.
  9. Kang, N. J., J. L. Cho, and S. M. Kang. 1997. Low temperature germinability of $K_3PO_4$-primed and pHregulated seeds of pepper. J. Kor. Soc. Hort. Sci. 38: 459-463.
  10. Kang, J. S., Y. W. Choi, B. G. Son, Y. J. Lee, C. K. Ahn, I. S. Choi, and H. C, Park. 2003. Effect of osmotic priming and solid matrix priming to improved seed vigor and early growth of pepper and tomato seeds. Kor. J. Life. Sci. 13: 433-440. https://doi.org/10.5352/JLS.2003.13.4.433
  11. Kauss, H., E. Theisinger-Hinkel, R. Mindermann, and U. Conrath. 1992. Dichloroisonicotinic and salicylic acid, inducers of systemic acquired resistance, enhance fungal elicitor responses in parsley cells. Plant J. 2: 655-660. https://doi.org/10.1111/j.1365-313X.1992.tb00134.x
  12. Khan, A. A. 1992. Preplant physiological seed condition. Hort. Rev. 13: 131-181.
  13. Kubik, K. K., J. A. Eastin, J. D. Eastin, and K. M. Eskridge. 1988. Solid matrix priming of tomato and pepper. Proc. Int. Conf. stand Est. Hortic. Crops, Lancaster, PA. p. 86-96.
  14. McClendon, J. H. 1981. The osmotic pressure of concentrated solution of polyethylene glycol 6,000, and its variation with temperature. J. Exp. Bot. 32: 861-866. https://doi.org/10.1093/jxb/32.4.861
  15. Ryals, J. A., U. H. Neuenschwander, M. G. Willits, A. Molina, H. Y. Steiner, and M. D. Hunt. 1996. Systemic acquired resistance. Plant Cell 8: 1809-1819.
  16. Silue, D., E. Pajot, and Y. Cohen. 2002. Induction of resistance to downy mildew (Peronospora parasitica) in cauliflower by DL-$\beta$-amino-n-butanoic acid (BABA). Plant Pathol. 51: 97-102. https://doi.org/10.1046/j.1365-3059.2002.00649.x
  17. Sunwoo, J. Y., Y. K. Lee, and B. K. Hwang. 1996. Induced resistance against hytophthora capsici in pepper plants in response to DL-$\beta$-amino-n-butyric acid. European J. Plant Pathol. 102: 663-670. https://doi.org/10.1007/BF01877247
  18. Taylor, A. G., D. E. Klein, and T. H. Whitlow. 1988. SMP: Solid matrix priming of seeds. Sci. Hort. 37: 1-11. https://doi.org/10.1016/0304-4238(88)90146-X
  19. Ziadi, S., S. Barbedette, J. F. Godard, C. Monot, D. Le Corre, and D. Silue. 2001. Production of pathogenesisrelated proteins in the cauliflower (Brassica oleracea var. botrytis)-downy mildew (Peronospora parasitica) pathosystem treated with acibenzolar-S-methyl. Plant Pathol. 50: 579-586. https://doi.org/10.1046/j.1365-3059.2001.00609.x