DOI QR코드

DOI QR Code

Akaike Information Criterion-Based Reliability Analysis for Discrete Bimodal Information

바이모달 이산정보에 대한 아카이케정보척도 기반 신뢰성해석

  • Lim, Woochul (Dept. of Automotive Engineering, College of Engineering, Hanyang Univ.) ;
  • Lee, Tae Hee (Dept. of Automotive Engineering, College of Engineering, Hanyang Univ.)
  • 임우철 (한양대학교 공과대학 자동차공학과) ;
  • 이태희 (한양대학교 공과대학 자동차공학과)
  • Received : 2012.05.25
  • Accepted : 2012.08.02
  • Published : 2012.12.01

Abstract

The distribution of a response usually depends on the distribution of the variables. When a variable shows a distribution with two different modes, the response also shows a distribution with two different modes. In this case, recently developed methods for reliability analysis assume that the distribution functions are continuous with a mode. In actual problems, however, because information is often provided in a discrete form with two or more modes, it is important to estimate the distributions for such information. In this study, we employ the finite mixture model to estimate the response distribution with two different modes, and we select the best candidate distribution through AIC. Mathematical examples are illustrated to verify the proposed method.

신뢰성해석에서 응답의 분포는 변수의 분포에 따라 달라진다. 특히 변수의 분포가 바이모달 분포일 때 대부분 응답의 분포 또한 바이모달 분포이다. 이런 문제에 대해 기존의 신뢰성해석 기법은 변수를 하나의 모드를 갖고 연속함수로 정의되는 특정 확률분포로 가정하고 신뢰성해석을 수행한다. 하지만 실제 문제에서 변수들은 이산정보이면서 한 개 이상의 모드를 갖는 경우가 많기 때문에 변수의 분포에 대한 가정을 하지 않고 한 개 이상의 모드를 고려한 신뢰성해석을 수행하는 것은 매우 중요하다. 본 연구에서는 바이모달 이산정보를 고려한 신뢰성해석을 위해 유한 혼합 모델을 후보 분포로 사용한 아카이케정보척도 기반 신뢰성해석 기법을 제안한다. 수학예제를 통해 제안한 기법의 정확도를 검증하고 유용성을 확인한다.

Keywords

References

  1. Buslenko, N.P., Golenko, D.I., Shreider, Y.A., Sobol, I.M. and Sragowich, V.G., 1994, The Monte Carlo Method, Pergamon Press.
  2. Cornell, C.A., 1969, "A Probability-Based Structural Code," Journal of the American Concrete Institute, Vol.66, No.12, pp.974-985.
  3. Breitung, K., 1984, "Asymptotic Approximations for Multinormal Integrals," Journal of Engineering Mechanics Division, ASCE, Vol. 110, No. 3, pp. 357-366. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:3(357)
  4. Seo, H. S. and Kwak, B. M., 2002, "Efficient Statistical Tolerance Analysis for General Distributions Using Three-Point Information," International Journal of Production Research, Vol. 40, No. 4, pp. 931-944. https://doi.org/10.1080/00207540110095709
  5. Lee, S. H. and Kwak, B. M., 2006, "Response Surface Augmented Moment Method for Efficient Reliability Analysis," Structural Safety, Vol. 28, pp. 261-272. https://doi.org/10.1016/j.strusafe.2005.08.003
  6. Rahman, S. and Xu, H., 2004, "A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics," Probabilistic Engineering Mechanics, Vol. 19, No. 4, pp. 393-408. https://doi.org/10.1016/j.probengmech.2004.04.003
  7. Jung, J. J., 2007, Multiplicative Decomposition Method for Accurate Moment-Based Reliability Analysis, Ph.D. thesis, Hanyang University.
  8. Lim, W. and Lee, T. H., 2012, "Reliability-based Design Optimization Using Akaike Information Criterion for Discrete Information," Trans. of the KSME (A), Vol. 36, No. 6
  9. Choi, J., Hong, S., Chi, S., Lee, H., Park, C., Kim, H., Yeu, T. and Lee, T. H., 2011, "Probability Distribution for the Shear Strength of Seafloor Sediment in the KR5 Area for the Development of Manganese Nodule Miner," Ocean Engineering, Vol. 38, pp. 2033-2041. https://doi.org/10.1016/j.oceaneng.2011.09.011
  10. Kim, S., Jun, S., Kang H., Park Y., and Lee D., 2011, "Reliability Based Optimal Design of a Helicopter Considering Annual Variation of Atmospheric Temperature," Journal of Mechanical Science and Technology, Vol. 25, pp. 1095-1104. https://doi.org/10.1007/s12206-011-0303-5
  11. Fu, G. and Moses, F., 1993, "Multimodal Simulation Method for System Reliability Analysis," Journal of Engineering Mechanics, Vol. 119, No. 6, pp. 1173-1179. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:6(1173)
  12. Li, G. and Zhang, K., 2011, "A Combined Reliability Analysis Approach with Dimension Reduction Method and Maximum Entropy Method," Struct. Multidisc. Optim., Vol. 43, pp. 121-134. https://doi.org/10.1007/s00158-010-0546-2
  13. Johnson, N. L., Kotz, S. and Balakrishnan, L., 1994, Continuous Univariate Distributions, Vol. 1, Wiley- Interscience.
  14. Akaike, H., 1973, "Information theory and an extension of the maximum likelihood principle," Proceedings of the Second International Symposium on Information Theory, pp. 267-281.
  15. Hurvich, C. M., Simonoff, J. S. and Tsai, C. L., 1998, "Smoothing Parameter Selection in Nonparametric Regression using an Improved Akaike Informaion Criterion," Journal of the Royal Statistical Society Series B-Statistical Methodology, Vol.60, pp. 271-293. https://doi.org/10.1111/1467-9868.00125
  16. Pan, W., 2001, "Akaike's Information Criterion in Generalized Estimating Equations," Biometrics, Vol. 57, pp. 120-125. https://doi.org/10.1111/j.0006-341X.2001.00120.x
  17. Spendelow, J. A., Nichols, J. D., Nisbet, I. C. T., Hays, H., Cormons, G. D., Burger, J., Safina, C., Hines, J. E. and Gochfeld, M., 1995, "Estimating Annual Survival and Movement Rates of Adults within a Metapopulation of Roseate Terns," Ecology, Vol. 76, No. 8, pp. 2415-2428. https://doi.org/10.2307/2265817
  18. Al-Rubaie, K. S., Godefroid L. B. and Lopes J. A. M., 2007, "Statistical Modeling of Fatigue Crack Growth Rate in Inconel Alloy 600," International Journal of Fatigue, Vol. 29, pp. 931-940. https://doi.org/10.1016/j.ijfatigue.2006.07.013
  19. Go, S. J., Lee, M. C. and Park, M. K., 2001, "Fuzzy Sliding Mode Control of a Polishing Robot based on Genetic Algorithm," Journal of Mechanical Science and Technology, Vol. 15, No. 5, pp. 580-591.
  20. Sakamoto, Y., Ishiguro, M. and Kitagawa, G., 1986, Akaike Information Criterion Statistics, KTK Scientific Publishers, pp.56-85.