DOI QR코드

DOI QR Code

High-Temperature Viscosity Measurement of LiCl-KCl Molten Salts Comprising Actinides and Lanthanides

  • Kim, Jong-Yun (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Bae, Sang-Eun (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Dae-Hyun (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Choi, Yong Suk (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Yeon, Jei-Won (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Song, Kyuseok (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
  • Received : 2012.08.01
  • Accepted : 2012.08.20
  • Published : 2012.11.20

Abstract

Keywords

References

  1. Lee, H.; Park, G.-I.; Kang, K.-H.; Hur, J.-M.; Kim, J.-G.; Ahn, D.-H.; Cho, Y.-Z.; Kim, E. H. Nucl. Eng. Technol. 2011, 43, 317. https://doi.org/10.5516/NET.2011.43.4.317
  2. Williamson, M. A.; Willit, J. L. ibid. 2011, 43, 329.
  3. Inoue, T.; Koch, L. ibid. 2008, 30, 183.
  4. Nawada, H. P.; Fukuda, K. J. Phys. Chem. Solid 2005, 66, 647. https://doi.org/10.1016/j.jpcs.2004.07.022
  5. Ackerman, J. P. Ind. Eng.Chem. Res. 1991, 30, 142.
  6. Peng. Q.; Ding, J.; Wei, X.; Yang, J.; Yang, X. Appl. Energ. 2010, 87, 2812. https://doi.org/10.1016/j.apenergy.2009.06.022
  7. Brun, C. L. J. Nucl. Mater. 2007, 360, 1. https://doi.org/10.1016/j.jnucmat.2006.08.017
  8. Nunes, V. M. B.; Lourenco, M. J. V.; Santos, F. J. V.; Nieto de Castro, C. A. J. Chem. Eng. Data 2003, 48, 446. https://doi.org/10.1021/je020160l
  9. Hijikata, T.; Koyama, T. J. Power Energy Systems 2009, 3, 170. https://doi.org/10.1299/jpes.3.170
  10. Nagashima, A. Int. J. Thermophys 1990, 11, 417. https://doi.org/10.1007/BF01133571
  11. Nagai, T.; Uehara, A.; Fujii, T.; Sato, N.; Yamana, H. J. Nucl. Mater. 2011, 414, 226. https://doi.org/10.1016/j.jnucmat.2011.03.048
  12. Janz, G. J.; Tomkins, R. P. T.; Allen, C. B.; Downey, J. R., Jr.; Garner, G. L.; Krebs, U.; Singer, S. K. J. Phys. Chem. Ref. Data 1975, 4, 871. https://doi.org/10.1063/1.555527
  13. Matsumura, Y.; Mizuno, M.; Nishihara, K. J. Japan Welding Soc. 1966, 35, 421. https://doi.org/10.2207/qjjws1943.35.6_421
  14. Viswanath, D. S.; Ghosh, T. K.; Prasad, D. H. L.; Dutt, N. V. K. Viscosity of Liquid; Springer: 2007; pp 9-85.
  15. Katyshev, S. F.; Chervinskii, Y. F.; Desyatnik, V. N. Atom Energy 1982, 53, 565. https://doi.org/10.1007/BF01122100
  16. Moynihan, C. T.; Cantor, S. J. Chem. Phys. 1968, 48, 115. https://doi.org/10.1063/1.1664455
  17. Ghezzo, F.; Smith, D. R.; Starr, T. N.; Perram, T.; Starr, A. F.; Darlington, T. K.; Baldwin, R. K.; Oldenburg, S. J. J. Compos. Mater. 2010, 44, 1587. https://doi.org/10.1177/0021998310363165

Cited by

  1. Chemical diffusion coefficient calculation of U3+ in LiCl-KCl molten salt vol.91, pp.None, 2012, https://doi.org/10.1016/j.pnucene.2016.04.017
  2. Application of the rotating cylinder electrode in molten LiCl-KCl eutectic containing uranium(III)- and magnesium(II)-chloride vol.487, pp.None, 2012, https://doi.org/10.1016/j.jnucmat.2017.02.037
  3. Residual salt separation technique using centrifugal force for pyroprocessing vol.50, pp.7, 2012, https://doi.org/10.1016/j.net.2018.06.009
  4. In Situ Electrochemical Study of the Coexistence of Eu3+ and Eu2+ in Molten LiCl-KCl by Rotating Disc Electrode vol.167, pp.16, 2012, https://doi.org/10.1149/1945-7111/abd2da
  5. Coordination and Thermophysical Properties of Transition Metal Chlorocomplexes in LiCl-KCl Eutectic vol.125, pp.31, 2012, https://doi.org/10.1021/acs.jpcb.1c03748