References
- Meredith, P.; Sarna, T. Pigm. Cell Res. 2006, 19, 572. https://doi.org/10.1111/j.1600-0749.2006.00345.x
- Mason, H. S. J. Biolog. Chem. 1948, 172, 83.
- Raper, H. S. Physiol. Rev. 1928, 8, 245. https://doi.org/10.1152/physrev.1928.8.2.245
- Aroca, P.; Solano, F.; Garcia- Borron, J. C.; Lozano, J. A. J. Biochem. Biophys. Methods 1990, 21, 35. https://doi.org/10.1016/0165-022X(90)90043-C
- Liu, Y.; Simon, J. D. Pigm. Cell Res. 2005, 18, 42. https://doi.org/10.1111/j.1600-0749.2004.00197.x
- Simon, J. D.; Hong, L.; Peles, D. N. J. Phys. Chem. B 2008, 112, 13201. https://doi.org/10.1021/jp804248h
- Dadachova, E.; Bryan, R. A.; Howell, R. C.; Schweitzer, A. D.; Aisen, P.; Nosanchuk, J. D.; Casadevall, A. Pigm. Cell Melanoma R 2008, 21, 192.
- Hung, Y. C.; Sava, V. M.; Juang, C. L.; Yeh, T. C.; Shen, W. C.; Huang, G. W. S. J. Ethnopharmacol. 2002, 79, 75. https://doi.org/10.1016/S0378-8741(01)00358-0
- Hong, L.; Simon, J. D. J. Phys. Chem. B 2007, 111, 7938. https://doi.org/10.1021/jp071439h
- Potts, A. M. Invest. Ophth. Vis. Sci. 1964, 3, 405.
- Tisma, M.; Znidarsic-Plazl, P.; Plazl, I.; Zelic, B.; Vasic-Racki, D. Chem. Biochem. Eng. Q 2008, 22, 307.
- Boyer, R. F. Abstr. Pap. Am. Chem. S 1984, 188, 34.
- Nofsinger, J. B.; Eibest, L. M.; Gold, K. A.; Simon, J. D. Pigm. Cell Res. 2000, 13, 179. https://doi.org/10.1034/j.1600-0749.2000.130310.x
- Bowness, J. M.; Morton, R. A.; Shakr, M. H.; Stubbs, A. L. Biochem. J. 1952, 51, 521. https://doi.org/10.1042/bj0510521
- White, L. P. Nature 1958, 182, 1427. https://doi.org/10.1038/1821427a0
- Potts, A. M.; Au, P. C. Exp. Eye Res. 1976, 22, 487. https://doi.org/10.1016/0014-4835(76)90186-X
- Felix, C. C.; Hyde, J. S.; Sarna, T.; Sealy, R. C. J. Am. Chem. Soc. 1978, 100, 3922. https://doi.org/10.1021/ja00480a044
- Sarzanini, C.; Mentasti, E.; Abollino, O.; Fasano, M.; Aime, S. Mater. Chem. 1992, 39, 243.
- Hong, L.; Liu, Y.; Simon, J. D. Photochem. Photobio. 2004, 80, 477. https://doi.org/10.1562/2004-05-17-RA-172.1
- Samokhvalov, A.; Liu, Y.; Simon, J. D. Photochem. Photobio. 2004, 80, 84. https://doi.org/10.1562/2004-01-18-RA-047.1
- Watt, A. A. R.; Bothma, J. P.; Meredith, P. Soft Matter 2009, 5, 3754. https://doi.org/10.1039/b902507c
- Hong, L.; Simon, J. D. Photochem. Photobio. 2009, 81, 517.
- Commoner, B.; Townsend, J.; Pake, G. E. Nature 1954, 174, 689. https://doi.org/10.1038/174689a0
- Robinson, G. M.; Smyth, M. R. Analyst 1997, 122, 797. https://doi.org/10.1039/a701844d
- Di, J. W.; Bi, S. P. Spectrochim. Acta A 2003, 59, 3075. https://doi.org/10.1016/S1386-1425(03)00127-6
- Afkhami, A.; Nematollahi, D.; Khalafi, L.; Rafiee, M. Int. J. Chem. Kinet. 2005, 37, 17. https://doi.org/10.1002/kin.20046
- Lauren, M. H.; Wilker, J. J. J. Mater. Sci. 2007, 42, 8934. https://doi.org/10.1007/s10853-007-1648-0
- Herlinger, E.; Jameson, R. F.; Linert, W. J. Chem. Soc., Perkin Trans. 2 1995, 259.
- Bruenger, F. W.; Stover, B. J.; Atherton, D. R. Radiat. Res. 1967, 32, 1. https://doi.org/10.2307/3572300
- Boggess, R. K.; Martin, R. B. J. Am. Chem. Soc. 1975, 97, 3076. https://doi.org/10.1021/ja00844a026
- Pilbrow, J. R.; Carr, S. G.; Smith, T. D. J. Chem. Soc. A: Inorganic, Physical, Theoretical 1970, 723. https://doi.org/10.1039/j19700000723
- Sarna, T.; Hyde, J.; Swartz, H. Science 1976, 192, 1132. https://doi.org/10.1126/science.179142
- Blois, M. S.; Zahlan, A. B.; Maling, J. E. Biophys. J. 1964, 4, 471. https://doi.org/10.1016/S0006-3495(64)86797-7
- Sarna, T.; Lukiewicz, S. Folia Histochem. Cytochem. 1972, 10, 265.
- Liu, Y.; Hong, L.; Kempf, V. R.; Wakamatsu, K.; Ito, S.; Simon, J. D. Pigm. Cell Res. 2004, 17, 262. https://doi.org/10.1111/j.1600-0749.2004.00140.x
- Zhang, L.-M.; Chen, D.-Q. Coll. Surfaces A: Physicochem. Eng. Aspects 2002, 205, 231. https://doi.org/10.1016/S0927-7757(02)00039-0
- Pan, B.; Qiu, H.; Pan, B.; Nie, G.; Xiao, L.; Lv, L.; Zhang, W.; Zhang, Q.; Zheng, S. Water Res. 2010, 44, 815. https://doi.org/10.1016/j.watres.2009.10.027
- Duran, A.; Soylak, M.; Tuncel, S. A. J. Hazard. Mater. 2008, 155, 114. https://doi.org/10.1016/j.jhazmat.2007.11.037
- Hai, B.; Wu, J.; Chen, X.; Protasiewicz, J. D.; Scherson, D. A. Langmuir 2005, 21, 3104. https://doi.org/10.1021/la0487139
- Zhao, G. X. S.; Lee, J. L.; Chia, P. A. Langmuir 2003, 19, 1977. https://doi.org/10.1021/la026490l
Cited by
- Dopa/Catechol-Tethered Polymers: Bioadhesives and Biomimetic Adhesive Materials vol.54, pp.3, 2014, https://doi.org/10.1080/15583724.2014.881373
- Site-Specific In Situ Synthesis of Eumelanin Nanoparticles by an Enzymatic Autodeposition-Like Process vol.16, pp.5, 2015, https://doi.org/10.1021/acs.biomac.5b00187
- Water Soluble Melanin of Streptomyces lusitanus DMZ3 Persuade Synthesis of Enhanced Bio-medically Active Silver Nanoparticles vol.26, pp.4, 2015, https://doi.org/10.1007/s10876-014-0798-x
- Evaluation of the Practicality of Melanin as a Photodynamic-Inactivation Photosensitizer by Its Nanonization vol.28, pp.6, 2015, https://doi.org/10.2494/photopolymer.28.739
- On-column enzymatic synthesis of melanin nanoparticles using cryogenic poly(AAM-co-AGE) monolith and its free radical scavenging and electro-catalytic properties vol.5, pp.106, 2015, https://doi.org/10.1039/C5RA18965A
- One-pot green synthesis of eumelanin: process optimization and its characterization vol.5, pp.59, 2015, https://doi.org/10.1039/C5RA01962A
- Melanin: A Naturally Existing Multifunctional Material vol.27, pp.2, 2016, https://doi.org/10.14478/ace.2016.1029
- Enzyme-Mediated In Situ Synthesis and Deposition of Nonaggregated Melanin Protoparticles vol.301, pp.7, 2016, https://doi.org/10.1002/mame.201500315
- Nanoarchitecturing of Natural Melanin Nanospheres by Layer-by-Layer Assembly: Macroscale Anti-inflammatory Conductive Coatings with Optoelectronic Tunability vol.18, pp.6, 2017, https://doi.org/10.1021/acs.biomac.7b00336
- The Supramolecular Buildup of Eumelanin: Structures, Mechanisms, Controllability vol.18, pp.9, 2017, https://doi.org/10.3390/ijms18091901
- Mechanical and photo-fragmentation processes for nanonization of melanin to improve its efficacy in protecting cells from reactive oxygen species stress vol.117, pp.6, 2015, https://doi.org/10.1063/1.4907997
- Multi-scale Assembly in Nano-scaled Sepia Melanin Natural Dye vol.2, pp.7, 2012, https://doi.org/10.1016/j.matpr.2015.08.028
- Efficient Binding of Heavy Metals by Black Sesame Pigment: Toward Innovative Dietary Strategies To Prevent Bioaccumulation vol.64, pp.4, 2012, https://doi.org/10.1021/acs.jafc.5b05191
- Interpretation of Ocular Melanin Drug Binding Assays. Alternatives to the Model of Multiple Classes of Independent Sites vol.13, pp.4, 2016, https://doi.org/10.1021/acs.molpharmaceut.5b00783
- Effects of pH and Oxidants on the First Steps of Polydopamine Formation: A Thermodynamic Approach vol.122, pp.24, 2012, https://doi.org/10.1021/acs.jpcb.8b02304
- Gadolinium Doping Enhances the Photoacoustic Signal of Synthetic Melanin Nanoparticles: A Dual Modality Contrast Agent for Stem Cell Imaging vol.31, pp.1, 2012, https://doi.org/10.1021/acs.chemmater.8b04333
- Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals vol.123, pp.11, 2012, https://doi.org/10.1021/acs.jpcb.8b11994
- Enzyme-Lignin Nanocapsules Are Sustainable Catalysts and Vehicles for the Preparation of Unique Polyvalent Bioinks vol.20, pp.5, 2019, https://doi.org/10.1021/acs.biomac.9b00198
- Preparation of Bio‐Inspired Melanin Nanoplatforms Chelated with Manganese Ions as a Potential T1 MRI Contrast Agent vol.4, pp.19, 2019, https://doi.org/10.1002/slct.201802926
- From Extraction to Advanced Analytical Methods: The Challenges of Melanin Analysis vol.20, pp.16, 2012, https://doi.org/10.3390/ijms20163943
- Synthesis of Ultrasmall Synthetic Melanin Nanoparticles by UV Irradiation in Acidic and Neutral Conditions vol.2, pp.10, 2012, https://doi.org/10.1021/acsabm.9b00747
- Synthesis of Melanin Mediated Silver Nanoparticles from Aeromonas sp. SNS Using Response Surface Methodology: Characterization with the Biomedical Applications and Photocatalytic Degradation of Brilli vol.27, pp.11, 2012, https://doi.org/10.1007/s10924-019-01529-5
- Adsorption of molybdenum by melanin vol.24, pp.None, 2012, https://doi.org/10.1186/s12199-019-0791-y
- Recent advances in melanin-like nanomaterials in biomedical applications: a mini review vol.23, pp.1, 2012, https://doi.org/10.1186/s40824-019-0175-9
- Mechanism of UVA Degradation of Synthetic Eumelanin vol.20, pp.12, 2019, https://doi.org/10.1021/acs.biomac.9b01433
- The effect of metal ions on endogenous melanin nanoparticles used as magnetic resonance imaging contrast agents vol.8, pp.1, 2012, https://doi.org/10.1039/c9bm01580a
- Ultra-small pyomelanin nanogranules abiotically derived from bacteria-secreted homogentisic acid show potential applications in inflammation and cancer vol.10, pp.1, 2012, https://doi.org/10.1007/s12668-019-00689-x
- Characterization of broadband complex refractive index of synthetic melanin coatings and their changes after ultraviolet irradiation vol.117, pp.20, 2012, https://doi.org/10.1063/5.0024229
- Effect on Human Vascular Endothelial Cells of Au Nanoparticles Synthesized from Vitex mollis vol.6, pp.38, 2012, https://doi.org/10.1021/acsomega.1c01506
- Contrast agents for photoacoustic imaging: a review of stem cell tracking vol.12, pp.1, 2021, https://doi.org/10.1186/s13287-021-02576-3