DOI QR코드

DOI QR Code

A Series of 3D Lanthanide Complexes Containing (La(III), Sm(III) and Gd(III)) Metal-organic Frameworks: Synthesis, Structure, Characterization and Their Luminescent Properties

  • Zhang, Huai-Min (Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University) ;
  • Yang, Hao (Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University) ;
  • Wu, Lan-Zhi (Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University) ;
  • Song, Shuang (Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University) ;
  • Yang, Li-Rong (Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University)
  • Received : 2012.07.16
  • Accepted : 2012.08.28
  • Published : 2012.11.20

Abstract

Three kinds of 3D isomorphous and isostructural coordination polymers, namely, $\{[Ln_2(PDA)_3(H_2O)_3]{\cdot}0.25H_2O\}_{\infty}$ (Ln = La(1), Sm(2), and Gd(3)) ($PDA^{2-}$ = pyridine-2,6-dicarboxylate anion) have been synthesized under hydrothermal conditions and characterized by elemental analyses, IR spectroscopy, thermal analyses and single crystal X-ray diffraction. In these MOFs, Ln(III) centers adopt eight-coordinated and nine-coordinated with the $N_1O_7$ and $N_2O_7$ donor sets to construct distorted trianglar dodecahedron geometry and tricapped trigonal prism configurations, respectively. Based on the building block of tetranuclear homometallic $Ln_4C_4O_8$ unit (16-membered ring), 1-3 are connected into highly ordered 2D sheets via O-C-O linkers and further constructed into 3D architectures through hydrogen bonds. Crystallographic parameters suggest that the lanthanide contraction effect exist in these coordination polymers. Luminescent properties of the lanthanide-based MOFs (metal-organic frameworks) have been measured at room temperature, which reveal that they presenting ionselective characters toward certain metals, such as $Mg^{2+}$, $Cd^{2+}$ and $Pb^{2+}$ ions.

Keywords

References

  1. Devic, T.; Serre, C.; Audebrand, N.; Marrot, J.; Férey, G. J. Am. Chem. Soc. 2005, 127, 12788. https://doi.org/10.1021/ja053992n
  2. Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. Science 2005, 309, 2040. https://doi.org/10.1126/science.1116275
  3. Shi, F.; Cunha-Silva, L.; Ferreira, R. A. S.; Mafra, L.; Trindade, T.; Carlos, L.; Paz, F. A. A.; Rocha, J. J. Am. Chem. Soc. 2008, 130, 150. https://doi.org/10.1021/ja074119k
  4. Aillaud, I.; Collin, J.; Duhayon, C.; Guillot, R.; Lyubov, D.; Schulz, E.; Trifonov, A. Chem. Eur. J. 2008, 14, 2189. https://doi.org/10.1002/chem.200701090
  5. Chen, B. L.; Wang, L. B.; Xiao, Y. Q.; Fronczek, F. R.; Xue, M.; Cui, Y. J.; Qian, G. D. Angew. Chem. Int. Ed. 2009, 48, 500. https://doi.org/10.1002/anie.200805101
  6. Tranchemontagne, D. J.; Mendoza-Cortes, J. L.; Keee, M. O'; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1257. https://doi.org/10.1039/b817735j
  7. Ockwig, N. W.; Delgado-Friedrichs, O.; Keeffe, M. O'; Yaghi, O. M. Acc. Chem. Res. 2005, 38, 176. https://doi.org/10.1021/ar020022l
  8. Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998. https://doi.org/10.1021/ja0570032
  9. Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166. https://doi.org/10.1126/science.1120411
  10. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705. https://doi.org/10.1038/nature01650
  11. Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J.; Go, Y. B.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. Nature 2004, 427, 523. https://doi.org/10.1038/nature02311
  12. Chen, B. L.; Eddaoudi, M.; Hyde, S. T.; O'Keeffe, M.; Yaghi, O. M. Science 2001, 291, 1021. https://doi.org/10.1126/science.1056598
  13. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469. https://doi.org/10.1126/science.1067208
  14. Suh, M. P.; Cheon, Y. E.; Lee, E. Y. Coord. Chem. Rev. 2008, 252, 1007. https://doi.org/10.1016/j.ccr.2008.01.032
  15. Rieter, W. J.; Pott, K. M.; Taylor, K. M. L.; Lin, W. J. Am. Chem. Soc. 2008, 130, 11584. https://doi.org/10.1021/ja803383k
  16. Latroche, M.; Surblé, S.; Serre, C.; MellotDraznieks, C.; Llewellyn, P. L.; Lee, J. H.; Chang, J. S.; Jhung, S. H.; Férey, G. Angew. Chem. Int. Ed. 2006, 45, 8227. https://doi.org/10.1002/anie.200600105
  17. Halder, G. J.; Kepert, C. J.; Moubaraki, B.; Murray, K. S.; Cashion, J. D. Science 2002, 298, 1762. https://doi.org/10.1126/science.1075948
  18. Ferey G. Chem. Soc. Rev. 2007, 37, 191.
  19. Guo, J.; Zhang, J.; Zhang, T.; Wu, R.; Yu, W. Act. Phys. Chim. Sin. 2006, 22, 1206. https://doi.org/10.1016/S1872-1508(06)60055-7
  20. Harbuzaru, B. V.; Corma, A.; Rey, F.; Atienzar, P.; Jordá, J. L.; García, H.; Ananias, D.; Carlos, L. D.; Rocha, J. Angew. Chem. Int. Ed. 2008, 47, 1080. https://doi.org/10.1002/anie.200704702
  21. Dybtsev, D. N.; Nuzhdin, A. L.; Chun, H.; Bryliakov, K. P.; Talsi, E. P.; Fedin, V. P.; Kim, K. Angew. Chem. Int. Ed. 2006, 45, 916. https://doi.org/10.1002/anie.200503023
  22. Chen, B.; Wang, L.; Zapata, F.; Qian, G.; Lobkovsky, E. B. J. Am. Chem. Soc. 2008, 130, 6718. https://doi.org/10.1021/ja802035e
  23. Hasegawa, S.; Horike, S.; Matsuda, R.; Furukawa, S.; Mochizuki, K.; Kinoshita, Y.; Kitagawa, S. J. Am. Chem. Soc. 2007, 129, 2607. https://doi.org/10.1021/ja067374y
  24. Horike, S.; Bureekaew, S.; Kitagawa, S. Chem. Commun. 2008, 471.
  25. Jia, J. H.; Lin, X.; Wilson, C.; Blake, A. J.; Champness, N. R.; Hubberstey, P.; Walker, G.; Cussen, E. J.; Schroder, M. Chem. Commun. 2007, 840.
  26. Chen, B.; Zhao, X.; Putkham, A.; Hong, K.; Lobkovsky, E. B.; Hurtado, E. J.; Fletcher, A. J.; Thomas, K. M. J. Am. Chem. Soc. 2008, 130, 6411. https://doi.org/10.1021/ja710144k
  27. Zhang, J. P.; Chen, X. M. J. Am. Chem. Soc. 2008, 130, 6010. https://doi.org/10.1021/ja800550a
  28. Ma, S.; Wang, X. S.; Yuan, D.; Zhou, H. C. Angew. Chem. Int. Ed. 2008, 120, 4198. https://doi.org/10.1002/ange.200800312
  29. Dinc, M.; Long, J. R. Angew. Chem. Int. Ed. 2008, 120, 6870. https://doi.org/10.1002/ange.200801163
  30. Kurmoo, M. Chem. Soc. Rev. 2009, 38, 1353. https://doi.org/10.1039/b804757j
  31. Yang, S.; Lin, X.; Blake, A. J.; Thomas, K. M.; Hubberstey, P.; Champness, N. R.; Schroder, M. Chem. Comm. 2008, 46, 6108.
  32. Dong, Y. B.; Wang, P.; Ma, J. P.; Zhao, X. X.; Wang, H. Y.; Tang, B.; Huang, R. Q. J. Am. Chem. Soc. 2007, 129, 4872. https://doi.org/10.1021/ja070058e
  33. Morris, R. E.; Wheatley, P. S. Angew. Chem. Int. Ed. 2008, 47, 4966. https://doi.org/10.1002/anie.200703934
  34. Halim, M.; Tremblay, M. S.; Jockusch, S.; Turro, N. J.; Sames, D. J. Am. Chem. Soc. 2007, 129, 7704. https://doi.org/10.1021/ja071311d
  35. Davis, M. E. Nature 2002, 417, 813. https://doi.org/10.1038/nature00785
  36. Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. B. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450. https://doi.org/10.1039/b807080f
  37. Feng, M. L.; Kong, D. N.; Xie, Z. L.; Huang, X. Y. Angew. Chem. Int. Ed. 2008, 120, 8751. https://doi.org/10.1002/ange.200803406
  38. Allendorf, M.; Bauer, C.; Bhakta, R.; Houk, R. Chem. Soc. Rev. 2009, 38, 1330. https://doi.org/10.1039/b802352m
  39. Wang, P.; Ma, J. P.; Dong, Y. B.; Huang, R. Q. J. Am. Chem. Soc. 2007, 129, 10620. https://doi.org/10.1021/ja072442h
  40. Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477. https://doi.org/10.1039/b802426j
  41. Manos, M. J.; Malliakas, C. D.; Kanatzidis, M. G. Chem. Eur. J. 2007, 13, 51. https://doi.org/10.1002/chem.200600892
  42. Feng, M. L.; Kong, D. N.; Xie, Z. L.; Huang, X. Y. Angew. Chem. Int. Ed. 2008, 47, 8623. https://doi.org/10.1002/anie.200803406
  43. Bunzli, J. C. G.; Piguet, C. Chem. Soc. Rev. 2005, 34, 1048. https://doi.org/10.1039/b406082m
  44. Bunzli, J. C. G. Acc. Chem. Res. 2006, 39, 53. https://doi.org/10.1021/ar0400894
  45. Lu, W. G.; Jiang, L.; Feng, X. L.; Lu, T. B. Inorg. Chem. 2009, 48, 6997. https://doi.org/10.1021/ic900506z
  46. Lowe, M. P.; Parker, D. Chem. Commun. 2000, 707.
  47. Liu, W. S.; Jiao, T. Q.; Li, Y. Z.; Liu, Q. Z.; Tan, M. Y.; Wang, H.; Wang, L. F. J. Am. Chem. Soc. 2004, 126, 2280. https://doi.org/10.1021/ja036635q
  48. Zhao, B.; Chen, X. Y.; Cheng, P.; Liao, D. Z.; Yan, S. P.; Jiang, Z. H. J. Am. Chem. Soc. 2004, 126, 15394. https://doi.org/10.1021/ja047141b
  49. Zhu, Q. L.; Sheng, T. L.; Fu, R. B.; Hu, S. M.; Chen, J. S.; Xiang, S. C.; Shen, C. J.; Wu, X. T. Cryst. Growth Des. 2008, 9, 5128.
  50. Zhu, T.; Ikarashi, K.; Ishigaki, T.; Uematsu, K.; Toda, K.; Okawa, H.; Sato, M. Inorg. Chim. Acta 2009, 362, 3407. https://doi.org/10.1016/j.ica.2009.01.036
  51. Wang, Z. Q.; Cohen, S. M. Chem. Soc. Rev. 2009, 38, 1315. https://doi.org/10.1039/b802258p
  52. Custelcean, R.; Gorbunova, M. G. J. Am. Chem. Soc. 2005, 127, 16362. https://doi.org/10.1021/ja055528o
  53. Prasad, T. K.; Rajasekharan, M. V. Cryst. Growth Des. 2006, 6, 488. https://doi.org/10.1021/cg050417m
  54. Cabarrecq, C. B.; Ghys, J. D.; Fernandes, A.; Jaud, J.; Trombem, J. C. Inorg. Chim. Acta 2008, 361, 2909. https://doi.org/10.1016/j.ica.2008.02.053
  55. Mahata, P.; Ramya, K. V.; Natarajan, S. Dalton Trans. 2007, 36, 3973.
  56. Marcelo, O.; Rodrigues, Nivan B.; Júnior, D. C.; Carlos, A.; Simone, D.; Adriano, A. S.; Araújo; Brito-Silva, A. M.; Filipe, A.; Almeida, P.; Maria, E.; Mesquita, D.; Severino, A.; Júnior, Ricardo, O. F. J. Phys. Chem. B 2008, 112, 4204. https://doi.org/10.1021/jp075047m
  57. Liu, M. S.; Yu, Q. Y.; Cai, Y. P.; Su, C. Y.; Lin, X. M.; Zhou, X. X.; Cai, J. W. Cryst. Growth Des. 2008, 8, 4083. https://doi.org/10.1021/cg800526y
  58. Leonard, J. P.; Jensen, P.; McCabe, T.; O'Brien, J. E.; Peacock, R. D.; Kruger, P. E.; Gunnlaugsson, T. J. Am. Chem. Soc. 2007, 129, 10986. https://doi.org/10.1021/ja073049e
  59. Cai, M. G.; Chen, J. D.; Taha, M. Inorg. Chem. Commun. 2010, 13, 199. https://doi.org/10.1016/j.inoche.2009.11.015
  60. Dos Santos, C. M. G.; Harte, A. J.; Quinn, S. J.; Gunnlaugsson, T. Coordin. Chem. Rev. 2008, 252, 2512. https://doi.org/10.1016/j.ccr.2008.07.018
  61. Feng, X.; Shi, X. G.; Sun, Q.; Wang, L. Y.; Zhao, J. S.; Liu, Y. Y. Synth. React. Inorg. Met.-Org. Chem. 2010, 40, 479.
  62. Huang, Y. G.; Yuan, D. Q.; Gong, Y. Q.; Jiang, F. L.; Hong, M. C. J. Mol. Struct. 2008, 872, 99. https://doi.org/10.1016/j.molstruc.2007.02.020
  63. Yang, L. R.; Song, S.; Shao, C. Y.; Zhang, W.; Zhang, H. M.; Bu, Z. W.; Ren, T. G. Synth. Met. 2011, 161, 925. https://doi.org/10.1016/j.synthmet.2011.02.020
  64. Yang, L. R.; Song, S.; Shao, C. Y.; Zhang, W.; Zhang, H. M.; Bu, Z. W.; Ren, T. G. Synth. Met. 2011, 161, 1500. https://doi.org/10.1016/j.synthmet.2011.04.016
  65. Sheldrick, G. M. SADABS: Empirical Absorption Correction Software, University of Gottingen, Institut fur Anorganische Chemieder Universitat, Tammanstrasse 4, D-3400 Gottingen, Germany, 1999.
  66. Sheldrick, G. M. SHELXTL: version 5. Reference manual, Siemens Analytical X-ray Systems, USA, 1996.
  67. Tang, R. R.; Gu, G. L.; Zhao, Q. G. Spectrochim. Acta A 2008, 71, 371. https://doi.org/10.1016/j.saa.2007.12.047
  68. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley and Sons: New York, 1997.
  69. Yang, L. R.; Song, S.; Zhang, H. M.; Zhang, W.; Bu, Z. W.; Ren, T. G. Synth. Met. 2011, 161, 2230. https://doi.org/10.1016/j.synthmet.2011.08.023
  70. Tancrez, N.; Feuvrie, C.; Ledoux, I.; Zyss, J.; Toupet, L.; Le Bozec, H.; Maury, O. J. Am. Chem. Soc. 2005, 127, 13474. https://doi.org/10.1021/ja054065j
  71. Shi, F. N.; Cunha-Silva, L.; Trindade, T.; Paz, F. A. A.; Rocha, J. Cryst. Growth Des. 2009, 9, 2098. https://doi.org/10.1021/cg8004932
  72. Aghabozorg, H.; Moghimi, A.; Manteghi, F.; Ranjbar, M. Z. Anorg. Allg. Chem. 2005, 631, 909. https://doi.org/10.1002/zaac.200400459
  73. Zhao, B.; Yi, L.; Dai, Y.; Chen, X. Y.; Cheng, P.; Liao, D. Z.; Yan, S. P.; Jiang, Z. H. Inorg. Chem. 2005, 911.
  74. Brouca-Cabarrecq, C.; Fernandes, A.; Jaud, J.; Costes, J. Inorg. Chim. Acta 2002, 332, 54. https://doi.org/10.1016/S0020-1693(01)00811-8
  75. Ghosh, S. K.; Bharadwaj, P. K. Inorg. Chem. 2004, 43, 2293. https://doi.org/10.1021/ic034982v
  76. Gao, H. L.; Yi, L.; Zhao, B.; Zhao, X. Q.; Cheng, P.; Liao, D. Z.; Yan, S. P. Inorg. Chem. 2006, 45, 5980. https://doi.org/10.1021/ic060550j
  77. Song, Y.; Niu, Y.; Hou, H.; Zhu, Y. J. Mol. Struct. 2004, 689, 69. https://doi.org/10.1016/j.molstruc.2003.10.025
  78. Ghosh, S. K.; Bharadwaj, P. K. Inorg. Chem. 2005, 44, 3156. https://doi.org/10.1021/ic048159q
  79. Yao, J.; Deng, B.; Sherry, L. J.; McFarland, A. D.; Ellis, D. E.; Van Duyne, R. P.; Ibers, J. A. Inorg. Chem. 2004, 43, 7735. https://doi.org/10.1021/ic040071p
  80. Gao, H. L.; Yi, L.; Zhao, B.; Zhao, X. Q.; Cheng, P.; Liao, D. Z.; Yan, S. P. Inorg. Chem. 2006, 45, 5980. https://doi.org/10.1021/ic060550j
  81. Armelao, L.; Quici, S.; Barigelletti, F.; Accorsi, G.; Bottaro, G.; Cavazzini, M.; Tondello, E. Coord. Chem. Rev. 2010, 254, 487. https://doi.org/10.1016/j.ccr.2009.07.025
  82. Chandler, B. D.; Cramb, D. T.; Shimizu, G. K. H. J. Am. Chem. Soc. 2006, 128, 10403. https://doi.org/10.1021/ja060666e
  83. Selvin, P. R. Nat. Struct. Biol. 2000, 7, 730. https://doi.org/10.1038/78948
  84. Mahata, P.; Ramya, K. V.; Natarajan, S. Dalton Trans. 2007, 36, 3973.
  85. Yin, H.; Liu, S. X. J. Mol. Struct. 2009, 918, 165. https://doi.org/10.1016/j.molstruc.2008.07.033
  86. Arnaud, N.; Vaquer, E.; Georges, J. J. Analyst. 1998, 123, 261. https://doi.org/10.1039/a706522a
  87. Reineke, T. M.; Eddaoudi, M.; Fehr, M.; Kelley, D.; Yaghi, O. M. J. Am. Chem. Soc. 1999, 121, 1651. https://doi.org/10.1021/ja983577d
  88. Lu, W. G.; Jiang, L.; Feng, X. L.; Lu, T. B. Inorg. Chem. 2009, 48, 6997. https://doi.org/10.1021/ic900506z

Cited by

  1. 2D lanthanide MOFs driven by a rigid 3,5-bis(3-carboxy-phenyl)pyridine building block: solvothermal syntheses, structural features, and photoluminescence and sensing properties vol.18, pp.34, 2016, https://doi.org/10.1039/C6CE00885B
  2. Amino-decorated lanthanide(III) organic extended frameworks for multi-color luminescence and fluorescence sensing vol.2, pp.33, 2012, https://doi.org/10.1039/c4tc00962b