DOI QR코드

DOI QR Code

Growth and Characterization of Lithium Potassium Phthalate (LiKP) Single Crystals for Third Order Nonlinear Optical Applications

  • Sivakumar, B. (Department of Physics, Presidency College (Autonomous)) ;
  • Raj, S. Gokul (Department of Physics VEL TECH Dr. RR & Dr. SR Technical University) ;
  • Kumar, G. Ramesh (Department of Physics, University College of Engineering Arni, Anna University Chennai) ;
  • Mohan, R. (Department of Physics, Presidency College (Autonomous))
  • Received : 2012.07.05
  • Accepted : 2012.08.24
  • Published : 2012.11.20

Abstract

Single crystals of lithium potassium phthalate (LiKP) were successfully grown from aqueous solution by solvent evaporation technique. The grown crystals were characterized by single crystal X-ray diffraction. The lithium potassium phthalate $C_{16}\;H_{12}\;K\;Li_3\;O_{11}$ belongs to triclinic system with the following unit-cell dimensions at 298(2) K;$a=7.405(5){\AA}$;$b=9.878(5){\AA}$;$c=13.396(5){\AA}$;${\alpha}=71.778(5)^{\circ}$;${\beta}=87.300(5)^{\circ}$;${\gamma}=85.405(5)^{\circ}$; having a space group P1. Mass spectrometric analysis provides the molecular weight of the compound and possible ways of fragmentations occurs in the compound. Thermal stability of the crystal was also studied by both simultaneous TGA/DTA analyses. The UV-Vis-NIR spectrum shows a good transparency in the whole of Visible and as well as in the near IR range. Third order nonlinear optical studies have also been studied by Z-scan technique. Nonlinear absorption and nonlinear refractive index were found out and the third order bulk susceptibility of compound was also estimated. The results have been discussed in detail.

Keywords

References

  1. Van Stryland, E. W.; Vanherzeele, H.; Woodall, M. A.; Soileau, M. J.; Smirl, A. L.; Guha, S.; Bogess, T. F. Opt. Letter. 1985, 10, 490. https://doi.org/10.1364/OL.10.000490
  2. Sheik-Bahae, M.; Said, A. A.; Wei, T.; Hagan, D. J.; Van Stryland, E. W. IEEE J. QuantumElectron. 1990, 26, 760.
  3. Rodrigues, J. J., Jr.; Misoguti, L.; Nunes Mendonca, F. D. C. R.; Zilio, S. C. Opt. Mater. 2003, 22, 235. https://doi.org/10.1016/S0925-3467(02)00270-7
  4. Somac, M.; Somac, A.; Davies, B. L.; Humphery, M. G.; Wong, M. S. Opt. Mater. 2002, 21, 485.
  5. Natarajan, L. V.; Sutherland, R. L.; Tondiaglia, V. P.; Bunning, T. J.; Adams, W. W. J. Nonlinear Opt. Phys. Mater. 1996, 5, 89. https://doi.org/10.1142/S021886359600009X
  6. Xu, X.; Qiu, W.; Zhou, Q.; Tang, J.; Yang, F.; Sun, Z.; Audebert, P. J. Phys. Chem. B 2008, 112, 4913. https://doi.org/10.1021/jp7103775
  7. Breitzar, J. G.; Diott, D. D.; Iwaki, L. K.; Kirkpatrick, S. M.; Rauchturs, T. B. J. Phys. Chem. A 1999, 103, 6930. https://doi.org/10.1021/jp990137f
  8. Sharma, R. P.; Ritu, B.; Rajni, S.; Kariuki, B. M.; Urszula, R.; Warzajtis, B. J. Mol. Strut. 2005, 748, 143. https://doi.org/10.1016/j.molstruc.2005.03.028
  9. Orel, B.; Hadzi, D.; Cabassi, F. Spectrochimica Acta 1975, 3, 169.
  10. Shahabuddin, M. D.; Narasimamurty, T. S. J. Mat. Sci. Let. 1982, 1, 268. https://doi.org/10.1007/BF00727853
  11. Belyaev, L. M.; Belikova, G. S.; Gilvarg, A. B.; Silvestrova, I. M. Sov. Phys. Crystallogr. 1970, 14, 544.
  12. Hottenhuis, M. H. J.; Lucasius, C. B. J. Crystal Growth 1986, 78, 379. https://doi.org/10.1016/0022-0248(86)90074-6
  13. Hottenhuis, M. H. J.; Lucasius, C. B. J. Crystal. Growth 1988, 91, 623. https://doi.org/10.1016/0022-0248(88)90131-5
  14. Hottenhuis, M. H. J.; Lucasius, C. B. J. Crystal Growth 1989, 94, 708 https://doi.org/10.1016/0022-0248(89)90095-X
  15. Belyaev, L. M.; Belikova, G. S.; Gilvarg, A. B.; Golovei, M. P.; Kalinkina, I. N.; Kosourov, G. I. Opt. Spectrosc. 1970, 29, 522.
  16. Miniewicz, A.; Bartkiewicz, S. Adv. Mater. Opt. Electron. 1993, 2, 157. https://doi.org/10.1002/amo.860020402
  17. Kejalakshmy, N.; Srinivasan, K. J. Phys. D: Appl. Phys. 2003, 36, 1778. https://doi.org/10.1088/0022-3727/36/15/305
  18. Bruker, APEX2, SADABS, XPREP and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. 2004.
  19. Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. J. Appl. Cryst. 1993, 26, 343. https://doi.org/10.1107/S0021889892010331
  20. Sheldrick, G.; in SHELXS-97, Program for Crystal Structure Solution, University of Gottingen, 1997.
  21. Willard, H. H.; Merritt, L. L., Jr.; Dean, J. A.; Settle, F. A., Jr. Instrumental Methods of Analysis, sixth ed.; Wadsworth Publishing Company: USA, 1986; p 609.
  22. Sheik-Bahae, M.; Said, A. A.; VanStryland, E. W. Opt. Lett. 1989, 14, 955. https://doi.org/10.1364/OL.14.000955
  23. Hercher, M. Appl.Opt. 1967, 6, 947. https://doi.org/10.1364/AO.6.000947
  24. Sheik, M.; Said, A. A.; Wei, T.; Hagan, D. J.; Vanstoyland, A. W. IEEE J. Quant. Elect. 1990, 26, 760. https://doi.org/10.1109/3.53394
  25. Sheik-Bahe, M.; Said, A. A.; Wei, T. H.; Hagan, D. J.; Solileasu, M. J.; Vanstryland, E. W. Opt. Eng. 1991, 30, 1228 . https://doi.org/10.1117/12.55902
  26. Vanstryland, E. W.; Sheik-Bahae, M.; in Kuzyk, M. G., Dirk, C. W., Eds.; Characterisation Techniques and Tabulation for Organic Nonlinear Materials; Marcel Dekker Inc.: 1998; p 655.
  27. Kanagasekaran, T.; Mythili, P.; Srinivasan, P.; Nooraldeen, A. Y.; Palanisamy, P. K.; Gopalakrishnan, R. Cryst. Growth Des. 2008, 8, 2335. https://doi.org/10.1021/cg701132f
  28. Sivanesan, T.; Natarajan, V.; Pandi, S. Indian J. Science and Technology 2010, 3, 653.
  29. Sivanesan, T.; Natarajan, V.; Pandi, S. Indian J. Science and Technology 2010, 3, 656.
  30. Suriya Kumar, K., Ph.D thesis, University of Madras, India, 2009, p 63.

Cited by

  1. Synthesis, growth, structure and characterization of potassium lithium hydrogen phthalate mixed crystals vol.5, pp.57, 2015, https://doi.org/10.1039/C5RA05634A
  2. Material synthesis and characterization of NLO-active potassium hydrogen phthalate fumaric acid semiorganic crystal for frequency conversion vol.31, pp.1, 2012, https://doi.org/10.1007/s10854-019-02587-0
  3. Crystal Growth, Structural, Optical, Thermal, Mechanical and Dielectric Studies on NLO Active Potassium Hydrogen Phthalate L-threonine Semiorganic Crystal for Frequency Conversion vol.51, pp.6, 2021, https://doi.org/10.1007/s13538-021-00965-w