DOI QR코드

DOI QR Code

Investigation of Narrow Pore Size Distribution on Carbon Dioxide Capture of Nanoporous Carbons

  • Received : 2012.04.05
  • Accepted : 2012.08.23
  • Published : 2012.11.20

Abstract

Nanoporous carbons with a high specific surface area were prepared directly from thermoplastic acrylic resin as carbon precursor and MgO powder as template by carbonization over the temperature range, $500-1000^{\circ}C$. The effect of the carbonization temperature on the pore structure and $CO_2$ adsorption capacity of the obtained porous carbon was examined. The textural properties and morphology of the porous carbon materials were analyzed by $N_2/-196^{\circ}C$ and $CO_2/0^{\circ}C$ adsorption/desorption isotherms, SEM and TEM. The $CO_2$ adsorption capacity of the prepared porous carbon was measured at $25^{\circ}C$ and 1 bar and 30 bar. The specific surface area increased from 237 to $1251m^2/g$, and the total pore volumes increased from 0.242 to $0.763cm^3/g$ with increasing the carbonization temperature. The carbonization temperature acts mainly by generating large narrow micropores and mesopores with an average pore size dependent on the level of carbonization of the MgO-templated nanoporous carbons. The results showed that the MgO-templated nanoporous carbons at $900^{\circ}C$ exhibited the best $CO_2$ adsorption value of 194 mg/g at 1 bar.

Keywords

References

  1. Haszeldine, R. S. Science 2009, 325, 1647. https://doi.org/10.1126/science.1172246
  2. Williams, J. H.; DeBenedictis, A.; Ghanadan, R.; Mahone, A.; Moore, J.; Morrow, W. R., III; Price, S.; Torn, M. S. Science 2012, 335, 53. https://doi.org/10.1126/science.1208365
  3. Reay, D. S.; Dentener, F.; Smith, P.; Grace, J.; Feely, R. A. Nature Geosci. 2008, 1, 430. https://doi.org/10.1038/ngeo230
  4. International Energy Agency, Tracking industrial energy efficiency and $CO_{2}$ emissions, OECD/IEA, Paris, 2007.
  5. Samanta, A.; Zhao, A.; Shimizu, G. K. H.; Sarkar, P.; Gupta, R. Ind. Eng. Chem. Res. 2012, 51, 1438. https://doi.org/10.1021/ie200686q
  6. Aaron, D.; Tsouris, C. Sep. Sci. Technol. 2005, 40, 321. https://doi.org/10.1081/SS-200042244
  7. Rochelle, G. T. Science 2009, 325, 1652. https://doi.org/10.1126/science.1176731
  8. Zhang, Y.; Que, H.; Chen, C. C. Fluid Phase Equil. 2011, 311, 67. https://doi.org/10.1016/j.fluid.2011.08.025
  9. Versteeg, P.; Rubin, E. S. Inter. J. Greenhouse Gas Control 2011, 5, 1596. https://doi.org/10.1016/j.ijggc.2011.09.006
  10. Sevilla, M.; Fuertes, A. B. J. Colloid Interface Sci. 2012, 366, 147. https://doi.org/10.1016/j.jcis.2011.09.038
  11. Nachtigall, P.; Grajciar, L.; Perez-Pariente, J.; Pinar, A. B.; Zukal, A.; Cejka, J. Phys. Chem. Chem. Phys. 2012, 14, 1117. https://doi.org/10.1039/c1cp22816a
  12. Abid, H. R.; Pham, G. H.; Ang, H. M.; Tade, M. O.; Wang, S. J. Colloid Interface Sci. 2012, 366, 120. https://doi.org/10.1016/j.jcis.2011.09.060
  13. Morishige, K. J. Phys. Chem. 2011, 115, 9713.
  14. Nicolas, C. H.; Sublet, J.; Schiirman, Y.; Pera-Titus, M. Chem. Eng. Sci. 2011, 66, 6057. https://doi.org/10.1016/j.ces.2011.08.028
  15. Modak, A.; Nandi, M.; Mondal, J.; Bhaumik, A. Chem. Commun. 2012, 48, 248. https://doi.org/10.1039/c1cc14275e
  16. Meng, L. Y.; Cho, K. S.; Park, S. J. Carbon Lett. 2009, 10, 221. https://doi.org/10.5714/CL.2009.10.3.221
  17. Kim, B. J.; Cho, K. S.; Park, S. J. J. Colloid Interface Sci. 2010, 342, 575. https://doi.org/10.1016/j.jcis.2009.10.045
  18. Pevida, C.; Plaza, M. G.; Arias, B.; Fermoso, J.; Rubiera, F.; Pis, J. J. Appl. Surf. Sci. 2008, 254, 7165. https://doi.org/10.1016/j.apsusc.2008.05.239
  19. Meng, L. Y.; Cho, K. S.; Park, S. J. Carbon Lett. 2010, 11, 34. https://doi.org/10.5714/CL.2010.11.1.034
  20. Meng, L. Y.; Park, S. J. J. Colloid Interface Sci. 2010, 352, 498. https://doi.org/10.1016/j.jcis.2010.08.048
  21. Mishra, A. K.; Ramaprabhu, S. AIP Advances 2011, 1, art. no. 032152.
  22. Varghese, S. H.; Nair, R.; Nair, B. G.; Hanajiri, T.; Maekawa, T.; Yoshida, Y.; Kumar, D. S. Curr. Nanosci. 2010, 6, 331 https://doi.org/10.2174/157341310791659053
  23. Zong, J.; Zhu, Y.; Yang, X.; Li, C. J. Alloys Compounds 2011, 509, 2970 https://doi.org/10.1016/j.jallcom.2010.11.175
  24. Jiang, X.; Ju, X.; Huang, M. J. Alloys Compounds 2011, 509, S864. https://doi.org/10.1016/j.jallcom.2010.11.138
  25. Sevilla, M.; Alam, N.; Mokaya, R. J. Phys. Chem. C 2010, 114, 11314. https://doi.org/10.1021/jp102464e
  26. Konnoa, H.; Onishia, H.; Yoshizawab, N.; Azumia, K. J. Power Sources 2010, 195, 667. https://doi.org/10.1016/j.jpowsour.2009.07.039
  27. Morishita, T.; Soneda, Y.; Tsumura, T.; Inagaki, M. Carbon 2006, 44, 2360. https://doi.org/10.1016/j.carbon.2006.04.030
  28. Morishita, T.; Ishihara, K.; Kato, M.; Inagaki, M. Carbon 2007, 45, 209. https://doi.org/10.1016/j.carbon.2006.09.032
  29. Roldán, S.; Villar, I.; Ruíz, V.; Blanco, C.; Granda, M.; Menéndez, R.; Santamaría, R. Energy Fuels 2010, 24, 3422. https://doi.org/10.1021/ef901538m
  30. Manocha, S. M. Sadhana 2010, 28, 335.
  31. Jagiello, J. M. Carbon 2004, 42, 1227. https://doi.org/10.1016/j.carbon.2004.01.022
  32. Meng, L. Y.; Park, S. J. J. Colloid Interface Sci. 2012, 366, 125. https://doi.org/10.1016/j.jcis.2011.09.019
  33. Sevilla, M.; Valle-Vigón, P.; Fuertes, A. B. Adv. Funct. Mater. 2011, 21, 2781. https://doi.org/10.1002/adfm.201100291
  34. Siriwardane, R. V.; Shen, M. S.; Fisher, E. P.; Poston, J. A. Energy Fuels 2001, 15, 279. https://doi.org/10.1021/ef000241s
  35. Hao, G. P.; Li, W. C.; Lu, A. H. J. Mater. Chem. 2010, 21, 6447.

Cited by

  1. Experimental and modelling studies of carbon dioxide adsorption by porous biomass derived activated carbon vol.16, pp.7, 2014, https://doi.org/10.1007/s10098-014-0788-6
  2. Graphene oxide functionalized by poly(ionic liquid)s for carbon dioxide capture vol.134, pp.11, 2016, https://doi.org/10.1002/app.44592
  3. Preparation of nanoporous activated carbon and its application as nano adsorbent for CO2 storage vol.33, pp.2, 2016, https://doi.org/10.1007/s11814-015-0149-0
  4. Production of palm kernel shell-based activated carbon by direct physical activation for carbon dioxide adsorption pp.1614-7499, 2019, https://doi.org/10.1007/s11356-018-1903-8
  5. Effect of Activation Temperature on CO2 Capture Behaviors of Resorcinol-based Carbon Aerogels vol.35, pp.1, 2012, https://doi.org/10.5012/bkcs.2014.35.1.57
  6. Solvothermal synthesis of microporous superhydrophobic carbon with tunable morphology from natural cotton for carbon dioxide and organic solvent removal applications vol.3, pp.31, 2015, https://doi.org/10.1039/c5ta01874a
  7. Single step preparation of activated biocarbons derived from pomegranate peels and their CO2 adsorption performance vol.160, pp.None, 2012, https://doi.org/10.1016/j.jaap.2021.105338