References
- Haszeldine, R. S. Science 2009, 325, 1647. https://doi.org/10.1126/science.1172246
- Williams, J. H.; DeBenedictis, A.; Ghanadan, R.; Mahone, A.; Moore, J.; Morrow, W. R., III; Price, S.; Torn, M. S. Science 2012, 335, 53. https://doi.org/10.1126/science.1208365
- Reay, D. S.; Dentener, F.; Smith, P.; Grace, J.; Feely, R. A. Nature Geosci. 2008, 1, 430. https://doi.org/10.1038/ngeo230
-
International Energy Agency, Tracking industrial energy efficiency and
$CO_{2}$ emissions, OECD/IEA, Paris, 2007. - Samanta, A.; Zhao, A.; Shimizu, G. K. H.; Sarkar, P.; Gupta, R. Ind. Eng. Chem. Res. 2012, 51, 1438. https://doi.org/10.1021/ie200686q
- Aaron, D.; Tsouris, C. Sep. Sci. Technol. 2005, 40, 321. https://doi.org/10.1081/SS-200042244
- Rochelle, G. T. Science 2009, 325, 1652. https://doi.org/10.1126/science.1176731
- Zhang, Y.; Que, H.; Chen, C. C. Fluid Phase Equil. 2011, 311, 67. https://doi.org/10.1016/j.fluid.2011.08.025
- Versteeg, P.; Rubin, E. S. Inter. J. Greenhouse Gas Control 2011, 5, 1596. https://doi.org/10.1016/j.ijggc.2011.09.006
- Sevilla, M.; Fuertes, A. B. J. Colloid Interface Sci. 2012, 366, 147. https://doi.org/10.1016/j.jcis.2011.09.038
- Nachtigall, P.; Grajciar, L.; Perez-Pariente, J.; Pinar, A. B.; Zukal, A.; Cejka, J. Phys. Chem. Chem. Phys. 2012, 14, 1117. https://doi.org/10.1039/c1cp22816a
- Abid, H. R.; Pham, G. H.; Ang, H. M.; Tade, M. O.; Wang, S. J. Colloid Interface Sci. 2012, 366, 120. https://doi.org/10.1016/j.jcis.2011.09.060
- Morishige, K. J. Phys. Chem. 2011, 115, 9713.
- Nicolas, C. H.; Sublet, J.; Schiirman, Y.; Pera-Titus, M. Chem. Eng. Sci. 2011, 66, 6057. https://doi.org/10.1016/j.ces.2011.08.028
- Modak, A.; Nandi, M.; Mondal, J.; Bhaumik, A. Chem. Commun. 2012, 48, 248. https://doi.org/10.1039/c1cc14275e
- Meng, L. Y.; Cho, K. S.; Park, S. J. Carbon Lett. 2009, 10, 221. https://doi.org/10.5714/CL.2009.10.3.221
- Kim, B. J.; Cho, K. S.; Park, S. J. J. Colloid Interface Sci. 2010, 342, 575. https://doi.org/10.1016/j.jcis.2009.10.045
- Pevida, C.; Plaza, M. G.; Arias, B.; Fermoso, J.; Rubiera, F.; Pis, J. J. Appl. Surf. Sci. 2008, 254, 7165. https://doi.org/10.1016/j.apsusc.2008.05.239
- Meng, L. Y.; Cho, K. S.; Park, S. J. Carbon Lett. 2010, 11, 34. https://doi.org/10.5714/CL.2010.11.1.034
- Meng, L. Y.; Park, S. J. J. Colloid Interface Sci. 2010, 352, 498. https://doi.org/10.1016/j.jcis.2010.08.048
- Mishra, A. K.; Ramaprabhu, S. AIP Advances 2011, 1, art. no. 032152.
- Varghese, S. H.; Nair, R.; Nair, B. G.; Hanajiri, T.; Maekawa, T.; Yoshida, Y.; Kumar, D. S. Curr. Nanosci. 2010, 6, 331 https://doi.org/10.2174/157341310791659053
- Zong, J.; Zhu, Y.; Yang, X.; Li, C. J. Alloys Compounds 2011, 509, 2970 https://doi.org/10.1016/j.jallcom.2010.11.175
- Jiang, X.; Ju, X.; Huang, M. J. Alloys Compounds 2011, 509, S864. https://doi.org/10.1016/j.jallcom.2010.11.138
- Sevilla, M.; Alam, N.; Mokaya, R. J. Phys. Chem. C 2010, 114, 11314. https://doi.org/10.1021/jp102464e
- Konnoa, H.; Onishia, H.; Yoshizawab, N.; Azumia, K. J. Power Sources 2010, 195, 667. https://doi.org/10.1016/j.jpowsour.2009.07.039
- Morishita, T.; Soneda, Y.; Tsumura, T.; Inagaki, M. Carbon 2006, 44, 2360. https://doi.org/10.1016/j.carbon.2006.04.030
- Morishita, T.; Ishihara, K.; Kato, M.; Inagaki, M. Carbon 2007, 45, 209. https://doi.org/10.1016/j.carbon.2006.09.032
- Roldán, S.; Villar, I.; Ruíz, V.; Blanco, C.; Granda, M.; Menéndez, R.; Santamaría, R. Energy Fuels 2010, 24, 3422. https://doi.org/10.1021/ef901538m
- Manocha, S. M. Sadhana 2010, 28, 335.
- Jagiello, J. M. Carbon 2004, 42, 1227. https://doi.org/10.1016/j.carbon.2004.01.022
- Meng, L. Y.; Park, S. J. J. Colloid Interface Sci. 2012, 366, 125. https://doi.org/10.1016/j.jcis.2011.09.019
- Sevilla, M.; Valle-Vigón, P.; Fuertes, A. B. Adv. Funct. Mater. 2011, 21, 2781. https://doi.org/10.1002/adfm.201100291
- Siriwardane, R. V.; Shen, M. S.; Fisher, E. P.; Poston, J. A. Energy Fuels 2001, 15, 279. https://doi.org/10.1021/ef000241s
- Hao, G. P.; Li, W. C.; Lu, A. H. J. Mater. Chem. 2010, 21, 6447.
Cited by
- Experimental and modelling studies of carbon dioxide adsorption by porous biomass derived activated carbon vol.16, pp.7, 2014, https://doi.org/10.1007/s10098-014-0788-6
- Graphene oxide functionalized by poly(ionic liquid)s for carbon dioxide capture vol.134, pp.11, 2016, https://doi.org/10.1002/app.44592
- Preparation of nanoporous activated carbon and its application as nano adsorbent for CO2 storage vol.33, pp.2, 2016, https://doi.org/10.1007/s11814-015-0149-0
- Production of palm kernel shell-based activated carbon by direct physical activation for carbon dioxide adsorption pp.1614-7499, 2019, https://doi.org/10.1007/s11356-018-1903-8
- Effect of Activation Temperature on CO2 Capture Behaviors of Resorcinol-based Carbon Aerogels vol.35, pp.1, 2012, https://doi.org/10.5012/bkcs.2014.35.1.57
- Solvothermal synthesis of microporous superhydrophobic carbon with tunable morphology from natural cotton for carbon dioxide and organic solvent removal applications vol.3, pp.31, 2015, https://doi.org/10.1039/c5ta01874a
- Single step preparation of activated biocarbons derived from pomegranate peels and their CO2 adsorption performance vol.160, pp.None, 2012, https://doi.org/10.1016/j.jaap.2021.105338