DOI QR코드

DOI QR Code

Combination of Epstein-Barr Virus-Based Plasmid and Nonviral Polymeric Vectors for Enhanced and Prolonged Gene Expression

  • Choi, Hye (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Park, Key Sun (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Bae, Seon Joo (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Song, Su Jeong (Graduate School of Analytical Science and Technology, Chungnam National University) ;
  • Kim, Kyoon Eon (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Park, Jong-Sang (School of Chemistry and Molecular Engineering, Seoul National University) ;
  • Choi, Joon Sig (Department of Biochemistry, College of Natural Sciences, Chungnam National University)
  • Received : 2012.07.17
  • Accepted : 2012.08.14
  • Published : 2012.11.20

Abstract

An Epstein-Barr virus (EBV)-based plasmid contains the EBV nuclear antigen 1 (EBNA1) gene and EBV replication origin (oriP) sequence. Since EBNA1 (the only EBV-encoded protein) is combined with oriP, it is replicated simultaneously with chromosomal DNA in human, primate, and canine cells and is faithfully segregated at a stable copy number upon cell division. Consequently, it can be used to stably express gene inserts over a prolonged time in target cells. We have previously shown that the polyamidoamine (PAMAM) dendrimer can be surface-modified with L-arginine. Arginine is present at a high frequency in the transactivator of transcription (Tat) sequences of human immunodeficiency virus (HIV). It presents high membrane permeability and permits effective transfer of DNA inside the cells. In this study, we constructed two kinds of recombinant DNA by inserting the luciferase gene and enhanced green fluorescence protein (eGFP) gene as reporter genes into the pCEP4 plasmid vector. We measured dynamic light scattering (DLS) and zeta potential after preparing PAMAM-based cationic polymer/EBV-based plasmid complexes. We performed transfection of HEK 293 cell lines with the polyplexes, and monitored luciferase activity and green fluorescence protein (GFP) expression. Our results show that PAMAM-based cationic polymer/EBV plasmid complexes provide enhanced and sustained gene expression.

Keywords

References

  1. Kishida, T.; Asada, H.; Satoh, E.; Tanaka, S.; Shinya, M.; Hirai, H.; Iwai, M.; Tahara, H.; Imanishi, J.; Mazda, O. Gene Ther. 2001, 8, 1234. https://doi.org/10.1038/sj.gt.3301519
  2. Nishizaki, K.; Mazda, O.; Dohi, Y.; Satoh, E.; Kawata, T.; Mizuguchi, K.; Yonemasu, K.; Kitamura, S.; Taniguchi, S. Transplantation Proceedings 2000, 32, 2413. https://doi.org/10.1016/S0041-1345(00)01721-8
  3. Min, K. A.; Lee, S. K.; Kim, C. K. Biomaterials 2005, 26, 1063. https://doi.org/10.1016/j.biomaterials.2004.04.005
  4. S. E.; Sugden, B. Plasmid 2007, 58, 1. https://doi.org/10.1016/j.plasmid.2007.01.003
  5. Min, K. A.; Oh, S. T.; Yoon, K. H.; Kim, C. K.; Lee, S. K. Biochem. Biophys. Res. Commun. 2003, 305, 108. https://doi.org/10.1016/S0006-291X(03)00689-2
  6. Yates, J. L.; Warren, N.; Sugden, B. Nature 1985, 313, 812. https://doi.org/10.1038/313812a0
  7. Ernst, R.; Claessen, J. H.; Mueller, B.; Sanyal, S.; Spooner, E.; van der Veen, A. G.; Kirak, O.; Schlieker, C. D.; Weihofen, W. A.; Ploegh, H. L. PLoS Biol. 2011, 8, e1000605. https://doi.org/10.1371/journal.pbio.1000605
  8. Pfeffer, S.; Zavolan, M.; Grasser, F. A.; Chien, M.; Russo, J. J.; Ju, J.; John, B.; Enright, A. J.; Marks, D.; Sander, C.; Tuschl, T. Science 2004, 304, 734. https://doi.org/10.1126/science.1096781
  9. Yu, K. H.; Lo, Y. M.; Tse, G. M.; Chan, K. C.; Chan, A. B.; Chow, K. C.; Ma, T. K.; Vlantis, A. C.; Leung, S. F.; van Hasselt, C. A.; Johnson, P. J.; Chan, A. T. Clin. Cancer Res. 2004, 10, 1726. https://doi.org/10.1158/1078-0432.CCR-0991-3
  10. Dhar, S. K.; Yoshida, K.; Machida, Y.; Khaira, P.; Chaudhuri, B.; Wohlschlegel, J. A.; Leffak, M.; Yates, J.; Dutta, A. Cell 2001, 106, 287. https://doi.org/10.1016/S0092-8674(01)00458-5
  11. Sullivan, C. S.; Grundhoff, A. T.; Tevethia, S.; Pipas, J. M.; Ganem, D. Nature 2005, 435, 682. https://doi.org/10.1038/nature03576
  12. Futaki, S.; Suzuki, T.; Ohashi, W.; Yagami, T.; Tanaka, S.; Ueda, K.; Sugiura, Y. J. Biol. Chem. 2001, 276, 5836. https://doi.org/10.1074/jbc.M007540200
  13. Choi, J. S.; Nam, K.; Park, J. Y.; Kim, J. B.; Lee, J. K.; Park, J. S. J. Control Release 2004, 99, 445. https://doi.org/10.1016/j.jconrel.2004.07.027
  14. Brooks, H.; Lebleu, B.; Vives, E. Adv. Drug Deliv. Rev. 2005, 57, 559. https://doi.org/10.1016/j.addr.2004.12.001
  15. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polymer Journal 1985, 17, 117. https://doi.org/10.1295/polymj.17.117
  16. Maruyama-Tabata, H.; Harada, Y.; Matsumura, T.; Satoh, E.; Cui, F.; Iwai, M.; Kita, M.; Hibi, S.; Imanishi, J.; Sawada, T.; Mazda, O. Gene Ther. 2000, 7, 53. https://doi.org/10.1038/sj.gt.3301044
  17. KukowskaLatallo, J. F.; Bielinska, A. U.; Johnson, J.; Spindler, R.; Tomalia, D. A.; Baker, J. R. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 4897. https://doi.org/10.1073/pnas.93.10.4897

Cited by

  1. PAMAM Dendrimer Conjugated with N-terminal Oligopeptides of Mouse Fibroblast Growth Factor 3 as a Novel Gene Carrier vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1036