DOI QR코드

DOI QR Code

Quenching of Water Soluble Conjugated Polymer by Electrostatic Interaction

  • Jin, Youngeup (Department of Industrial Chemistry, Pukyong National University)
  • Received : 2012.06.09
  • Accepted : 2012.08.01
  • Published : 2012.11.20

Abstract

The water-soluble conjugated polymer with fluorescence quenching as a result of electrostatic interaction and aggregation was synthesized through Suzuki polymerization. The absorption and emission of anionic polymer (a-PFP) is blue shifted as compared with cationic polymer (c-PFP) although getting same backbone, and the absolute PL quantum efficiency of a-PFP in water is over 90% due to good solubility in aqueous solution. We anticipate that the fluorescence quenching of anionic and cationic polymers, with same conjugated backbone, could be shown in aqueous solution.

Keywords

References

  1. McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev. 2000, 100, 2537. https://doi.org/10.1021/cr9801014
  2. Huang, H.; Wang, K.; Tan, W.; An, D.; Yang, X.; Huang, S.; Zhai, Q.; Zhou, L.; Jin, Y. Angew. Chem., Int. Ed. 2004, 43, 5635. https://doi.org/10.1002/anie.200460371
  3. Nguyen, T.-Q.; Wu, J.; Doan, V.; Schwartz, B. J.; Tolbert, S. H. Science 2000, 288, 652. https://doi.org/10.1126/science.288.5466.652
  4. Bredas, J.-L.; Cornil, J.; Beljonne, D.; Dos Santos, D. A.; Shuai, Z. Acc. Chem. Res. 1999, 32, 267. https://doi.org/10.1021/ar9800338
  5. Kaiser, W.; Garret, C. G. B. Phys. Rev. Lett. 1961, 7, 229. https://doi.org/10.1103/PhysRevLett.7.229
  6. Rentzepis, P. M.; Pao, Y. H. Appl. Phys. Lett. 1964, 156, 964.
  7. Denk, W. Proc. Natl. Acad. Sci. USA 1994, 91, 6629. https://doi.org/10.1073/pnas.91.14.6629
  8. Denk, W.; Strickler, J. H.; Webb, W. W. Science 1990, 248, 73. https://doi.org/10.1126/science.2321027
  9. Chen, L.; McBranch, D. W.; Wang, H.; Helgeson, R.; Wudl, F.; Whitten, D. Proc. Natl. Acad. Sci. USA 1999, 96, 12287. https://doi.org/10.1073/pnas.96.22.12287
  10. Wang, J.; Wang, D.; Miller, E. K.; Moses, D.; Bazan, G. C.; Heeger, A. J. Macromolecules 2000, 33, 5153. https://doi.org/10.1021/ma000081j
  11. Harrison, B. S.; Ramey, M. B.; Reynolds, J. R.; Schanze, K. S. J. Am. Chem. Soc. 2000, 122, 8561. https://doi.org/10.1021/ja000819c
  12. McQuade, D. T.; Hegedus, A. H.; Swager, T. M. J. Am. Chem. Soc. 2000, 122, 12389. https://doi.org/10.1021/ja003255l
  13. Swager, T. M. Acc. Chem. Res. 1998, 31, 201. https://doi.org/10.1021/ar9600502
  14. Zhou, Q.; Swager, T. M. J. Am. Chem. Soc. 1995, 117, 12593. https://doi.org/10.1021/ja00155a023
  15. Chen, L.; Xu, S.; McBranch, D. W.; Whitten, D. J. Am. Chem. Soc. 2000, 122, 9302. https://doi.org/10.1021/ja001248r
  16. Liu, B.; Gaylord, B. S.; Wang, S.; Bazan, G. C. J. Am. Chem. Soc. 2003, 125, 6705. https://doi.org/10.1021/ja028961w
  17. Gossl, I.; Shu, L.; Schlüter, A. D.; Rabe, J. P. J. Am. Chem. Soc. 2002, 124, 6860. https://doi.org/10.1021/ja017828l
  18. Wang, Y.; Dubin, P. L.; Zhang, H. Langmuir 2001, 17, 1670. https://doi.org/10.1021/la0010673
  19. Bronich, T. K.; Nguyen, H. K.; Eisenberg, A.; Kabanov, A. V. J. Am. Chem. Soc. 2000, 122, 8339. https://doi.org/10.1021/ja0011865