References
- Ponce de Leon, C.; Frias-Ferrer, A.; Gonzalez-Garcia, J.; Szanto, D. A.; Walsh, F. C. J. Power Sources 2006, 160, 716. https://doi.org/10.1016/j.jpowsour.2006.02.095
- Thaller, L. H. US patent 3,996,064, 1975.
- Pletcher, D.; Wills, R. Phys. Chem. Chem. Phys. 2004, 6, 1779. https://doi.org/10.1039/b401116c
- Singh, P.; Jonshagen, B. J. Power Sources 1991, 35, 405. https://doi.org/10.1016/0378-7753(91)80059-7
- Singh, P.; White, K.; Parker, A. J. J. Power Sources 1983, 10, 309. https://doi.org/10.1016/0378-7753(83)80013-5
- Sum, E.; Skyllas-Kazacos, M. J. Power Sources 1985, 15, 179. https://doi.org/10.1016/0378-7753(85)80071-9
- Sum, E.; Rychcik, M.; Skyllas-Kazacos, M. J. Power Sources 1985, 16, 85. https://doi.org/10.1016/0378-7753(85)80082-3
- Chen, W.; Liu, Y.; Xin, Q. Int. J. Hydrogen Energy 2010, 35, 3783. https://doi.org/10.1016/j.ijhydene.2010.02.004
- Dihrab, S. S.; Sopian, K.; Alghoul, M. A.; Sulaiman, M. Y. Renew. Sust. Energy Rev. 2009, 13, 1663. https://doi.org/10.1016/j.rser.2008.09.029
- Yen, C. Y.; Liao, S. H.; Lin, Y. F.; Hung, C. H.; Lin, Y. Y.; Ma, C. C. M. J. Power Sources 2006, 162, 309. https://doi.org/10.1016/j.jpowsour.2006.06.076
- Liao, S. H.; Hung, C. H.; Ma, C. C. M.; Yen, C. Y.; Lin, Y. F.; Weng, C. C. J. Power Sources 2008, 176, 175. https://doi.org/10.1016/j.jpowsour.2007.10.064
- Smits, F. M. Bell System Technical Journal 1958, 37, 711. https://doi.org/10.1002/j.1538-7305.1958.tb03883.x
- Jones, D. A. Principles and Prevention of Corrosion, 2nd ed., Prentice Hall: Upper Saddle River, NJ, 1996.
Cited by
- Poly(vinylbenzyl chloride-glycidyl methacrylate)/Polyethylene Composite Anion Exchange Membranes for Vanadium Redox Battery Application vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1651
- Vanadium redox flow batteries: a technology review vol.39, pp.7, 2014, https://doi.org/10.1002/er.3260
- Supporting Material for Highly Reversible Zinc-Bromine Electrolytes vol.37, pp.3, 2016, https://doi.org/10.1002/bkcs.10669
- Bulk Aging of Graphite-Polypropylene Current Collectors Induced by Electrochemical Cycling in the Positive Electrolyte of Vanadium Redox Flow Batteries vol.164, pp.12, 2017, https://doi.org/10.1149/2.1261712jes
- Development of Integrally Molded Bipolar Plates for All-Vanadium Redox Flow Batteries vol.9, pp.5, 2016, https://doi.org/10.3390/en9050350
- Chemical Stability of Graphite-Polypropylene Bipolar Plates for the Vanadium Redox Flow Battery at Resting State vol.163, pp.10, 2016, https://doi.org/10.1149/2.0841610jes
- The Correlation Between Charge and Discharge Current for the Electrochemical Stability and Durability of Electrolyte in a Vanadium Redox Flow Battery vol.39, pp.9, 2018, https://doi.org/10.1002/bkcs.11546
- Corrosion of Graphite-Polypropylene Current Collectors during Overcharging in Negative and Positive Vanadium Redox Flow Battery Half-Cell Electrolytes vol.165, pp.5, 2018, https://doi.org/10.1149/2.0921805jes
- Design, Development, and Testing of a Low-Concentration Vanadium Redox Flow Battery vol.18, pp.1, 2012, https://doi.org/10.1115/1.4046869
- Review-Bipolar Plates for the Vanadium Redox Flow Battery vol.168, pp.6, 2012, https://doi.org/10.1149/1945-7111/ac0177
- Flexible graphite bipolar plates for vanadium redox flow batteries vol.45, pp.7, 2012, https://doi.org/10.1002/er.6592
- Review of Bipolar Plate in Redox Flow Batteries: Materials, Structures, and Manufacturing vol.4, pp.4, 2021, https://doi.org/10.1007/s41918-021-00108-4