DOI QR코드

DOI QR Code

Growth and Physiological Characteristics of Five Common Foliage Plant Species Grown under the Influence of Static Magnetic Field

정자기장 처리에 따른 실내 관엽식물의 생육 및 생리적 특성 변화

  • Lee, Seong Han (Department of Environmental Horticulture, University of Seoul) ;
  • Woo, Su Young (Department of Environmental Horticulture, University of Seoul) ;
  • Kwak, Myung Ja (Department of Environmental Horticulture, University of Seoul)
  • 이성한 (서울시립대학교 환경원예학과) ;
  • 우수영 (서울시립대학교 환경원예학과) ;
  • 곽명자 (서울시립대학교 환경원예학과)
  • Received : 2012.01.02
  • Accepted : 2012.06.14
  • Published : 2012.10.31

Abstract

The present study aimed to investigate the effect of static magnetic field (SMF) on the growth and physiological characteristics of common indoor plant species. Five foliage plant species, Spathiphyllum spp., Ardisia pusilla DC., Syngonium podophyllum, Peperomia pereskiifolia, and Pilea cadierei were potted into plastic pot equipped with round type anisotropic sintered NdFeB permanent magnet inside the pot. The surface magnetic flux density of each magnet was 3,500 G. After 6 months of growth period, the biomass accumulations of Spathiphyllum, A. pusilla, and P. cadierei under SMF were statistically higher than those of controls. Tissue water content also increased under the influence of SMF in most species. The photosynthetic rate of Spathiphyllum under SMF significantly increased but other species showed no significant difference compared with control. Although there was no significant increase in the photosynthetic rates of A. pusilla, and P. cadierei, they showed remarkable increase in total fresh weight under SMF. This suggests that the demand of assimilates for normal metabolism could be decreased under magnetic influence and thereby biomass accumulation could be more favored. But this is not always true for all plant species because P. pereskiifolia in this experiment, showed no changes in both photosynthetic rate and biomass accumulation. Leaf nitrogen and chlorophyll contents were enhanced significantly in most plant species under influence of SMF. Chlorophyll a/b ratio also increased by SMF. Although there might be a limitation depending on plant species, these results suggest that long-term exposure to SMF might allow plant to have an enhanced acclimation capacity against environmental fluctuations and optimal application of SMF could increase the practical use of indoor plants such as an attempt to improve indoor air quality.

본 연구는 정자기장 처리가 실내 관엽식물의 생육 및 생리적 특성에 미치는 영향과 그 작용 메커니즘을 파악하기 위해 수행되었다. 이를 위해 스파티필름(Spathiphyllum spp), 산호수(Ardisia pusilla DC.), 싱고니움(Syngonium podophyllum), 홀리아페페(Peperomia pereskiifolia) 및 필레아(Pilea cadierei)의 5종 관엽식물을 대상으로 안쪽 바닥면에 표면자속밀도 3,500G의 이방성 NdFeB계 원형 소결영구자석을 장착하여 자성처리한 화분에서 6개월간 생육시켜 나타난 변화를 관찰하였다. 자성처리화분에서의 생육은 스파티필름, 산호수 및 필레아에서 유의성 있는 생육증대를 유도하였으며 대부분의 식물종에서 조직 내 함수율을 증대시키는 것으로 나타났다. 스파티필름은 광합성률 또한 유의성 있게 증대되었으나 산호수 및 필레아의 경우 광합성률의 유의성 있는 증가가 나타나지 않았는데 이는 자성처리화분이 동화산물에 대한 정상적인 대사과정에서의 수요를 감소시킴으로써 생물량 축적에 보다 유리한 조건을 제공하는 것으로 해석된다. 그러나 홀리아페페의 경우 생육이나 광합성에 있어 별다른 차이가 유도되지 않았기 때문에 자성처리화분의 이와 같은 효과는 식물종에 따라 차이를 보일 것으로 생각된다. 실험에 사용된 대부분의 식물종에서 자성처리에 따른 엽 내 질소 및 엽록소 함량과 엽록소 a/b 비율에 유의성 있는 증가가 나타났다. 이와 같은 결과들은 식물종에 따른 제한은 있으나 적절한 자기장 처리를 통해 환경변화에 대한 관엽식물의 잠재적 적응능력을 높이고 실내 환경개선을 위한 실내식물의 활용도를 증대시킬 수 있는 가능성을 제시한다.

Keywords

References

  1. Allen, L.H. 1990. Plant responses to rising carbon dioxide and potential interactions with air pollutants. J. Environ. Quality 19:15-34.
  2. Bennett, J.H. and A.C. Hill. 1973. Absorption of gaseous pollutants by a standardized canopy. J. Air Pollution Contol Assn. 23:203-206. https://doi.org/10.1080/00022470.1973.10469767
  3. Bhatnager, D. and A.R. Deb. 1978. Some aspects of pregermination exposure of wheat seeds to magnetic field. II: Effects on some physiological processes. Seed Res. 6:14-22
  4. Björkman, O. 1981. Responses to different quantum flux densities, p. 57-107. In: O.L. Lange, P.S. Nobel, C.B. Osmond, and H. Ziegler (eds.). Physiological plant ecology. Springer, Berlin, Heidelberg, New York.
  5. von Caemmerer, S. and G.D. Farquhar. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376-387. https://doi.org/10.1007/BF00384257
  6. Chao, L. and D.R. Walker. 1967. Effect of magnetic field on germination of apple, apricot and peach seed. Hort. Sci. 2:152-153.
  7. Chapin, F.S. III and R.A. Kedrowski. 1983. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64:376-391. https://doi.org/10.2307/1937083
  8. Choi, J.H., K.W. Kwon, S.Y. Woo, and J.C. Chung. 2005. Stomatal changes following abscisic acid treatment in several broad-leaved trees undergoing artificial shade treatment. For. Sci. Technol. 1:20-26.
  9. Choi, W.J. and K.H. Lee. 2012. A short overview on linking annual tree ring carbon isotopes to historical changes in atmospheric environment. For. Sci. Technol. 8:61-66.
  10. Dhawi, F., J.M. Al-Khayri, and E. Hassan. 2009. Static magnetic field influence on elements composition in date palm (Phoenix dactylifera L.). Res. J. Agr. Biol. Sci. 5:161-166.
  11. Duarte Diaz, C.E., J.A. Riquenes, B. Sotolongo, M.A. Portuondo, E.O. Quintana, and R. Perez. 1997. Effects of magnetic treatment of irrigation water on the tomato crop. Hort. Abstr. 69:494. (Abstr.)
  12. Esitken, A. and M. Turan. 2004. Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria ${\times}$ ananassa cv. Camarosa). Acta Agric. Scand., Sect. B, Soil and Plant Sci. 54:135-139. https://doi.org/10.1080/09064710310019748
  13. Fowler, D. 1985. Deposition of $SO_{2}$ onto plant canapies, sulfur dioxide and vegetation. Stanford University Press, Stanford, CA p. 389-402.
  14. Furukawa, A., O. Isoda, H. Iwaki, and T. Totsuka. 1979. Interspecific difference in responses of transpiration to $SO_{2}$. Environ. Control Biol. 17:153-159. https://doi.org/10.2525/ecb1963.17.153
  15. Huang, H.H. and S.R. Wang. 2007. The effects of 60 Hz magnetic fields on plant growth. Nature Sci. 5:60-68.
  16. Johnson, C.C. and A.W. Guy. 1972. Nonionizing electrostatic wave effects in biological materials and systems. Proc. IEEE. 60:692-718. https://doi.org/10.1109/PROC.1972.8728
  17. Krylov, A.V. and G.A. Tarakanova. 1960. Magnetropism of plants and its nature. Plant Physiol. 7:156-160.
  18. Moon, J.D. and H.S. Chung. 2000. Acceleration of germination of tomato seed by applying AC electric and magnetic fields. J. Electrostatics 48:103-114. https://doi.org/10.1016/S0304-3886(99)00054-6
  19. Mooney, H.A., P.J. Ferrar, and R.O. Slatyer. 1978. Photosynthetic capacity and carbon allocation patterns in diverse growth forms of Eucalyptus. Oecologia 36:103-111. https://doi.org/10.1007/BF00344575
  20. Pittman, U.J. 1967. Biomagnetic responses in Kharkov 22 MC winter wheat. Can. J. Plant Sci. 47:389-393. https://doi.org/10.4141/cjps67-070
  21. Pittman, U.J. and D.P. Ormrod. 1970. Physiological and chemical features of magnetically treated winter wheat seed and resultant seedlings. Can. J. Plant Sci. 50:211-217. https://doi.org/10.4141/cjps70-044
  22. Prsa, I., F. Stampar, D. Vodnik, and R. Veberic. 2007. Influence of nitrogen on leaf chlorophyll content and photosynthesis of 'Golden Delicious' apple. Acta Agric. Scand., Sect. B, Soil Plant Sci. 57:283-289. https://doi.org/10.1080/09064710600982878
  23. Racuciu, M., D. Creanga, and I. Horga. 2008. Plant growth under static magnetic field influence. Rom. J. Phys. 53:353-359.
  24. Savostin, P.V. 1930. Magnetic growth relations in plants. Planta 12:327-330. https://doi.org/10.1007/BF01912860
  25. Seemann, J.R., T.D. Sharkey, J.L. Wang, and C.B. Osmond. 1987. Environmental effects on photosynthesis, nitrogen-use efficiency and metabolite pools in leaves of sun and shade plants. Plant Physiol. 84:796-802 https://doi.org/10.1104/pp.84.3.796
  26. Selmar, D., R. Lieberei, and B. Biehl. 1988. Mobilization and utilization of cyanogenic glycosides. The linustatin pathway. Plant Physiol. 86:711-716. https://doi.org/10.1104/pp.86.3.711
  27. Smith, W.H. 1990. Air pollution and forest. Springer-Verlag, New York.
  28. Snyder, S.D. 1990. Building interiors, plants and automation. Prentice Hall, Englewood Cliffs, NJ, USA p. 5-29.
  29. Son, K.C., S.H. Lee, S.G. Seo, and J.E. Song. 2000. Effects of foliage plant and potting soil on the absorption and adsorption of indoor air pollutants. J. Kor. Soc. Hort. Sci. 41:305-310.
  30. Stange, B.C., R.E. Rowland, B.I. Rapley, and J.V. Podd. 2002. ELF magnetic field increase aminoacid uptake into Vicia faba L. roots and alter ion movement across the plasma membrane. Bioelectromagnetics 23:347-354. https://doi.org/10.1002/bem.10026
  31. Terashima, I. and J.R. Evans 1988. Effects of light and nitrogen nutrition on the organization of the photosynthetic apparatus in spinach. Plant Cell Physiol. 29:143-155.
  32. Woo, K.S., J.H. Yoon, S.Y. Woo, S.H. Lee, S.U. Han, H.R. Han, S.G. Baek, and C.S. Kim. 2010. Comparison in disease development and gas exchange rate of Pinus densiflora seedlings artificially inoculated with Bursaphelenchus xylophilus and B. mucronatus. For. Sci. Technol. 6:110-117.
  33. Yoon, J.W., K.C. Son, D.S. Yang, and J.K. Stanley. 2009. Removal of indoor tobacco smoke under light and dark conditions as affected by foliage plants. Kor. J. Hort. Sci. Technol. 27:312-318.