DOI QR코드

DOI QR Code

Separation Characteristics of $CH_4/CO_2$ Mixed Gas by Polyamide Composite Membrane

Polyamide 복합막을 이용한 메탄/이산화탄소 혼합기체의 분리 특성

  • Lee, Jae-Hwa (Department of Environmental Engineering, Kongju National University) ;
  • Lee, Geon-Ho (Department of Environmental Engineering, Kongju National University) ;
  • Choi, Kyung-Seok (Department of Environmental Engineering, Kongju National University) ;
  • Poudel, Jeeban (Department of Environmental Engineering, Kongju National University) ;
  • Kim, Soo-Ryong (Green Ceramics Division, KICET) ;
  • Oh, Sea-Cheon (Department of Environmental Engineering, Kongju National University)
  • 이재화 (공주대학교 환경공학과) ;
  • 이건호 (공주대학교 환경공학과) ;
  • 최경석 (공주대학교 환경공학과) ;
  • ;
  • 김수룡 (한국세라믹기술원 그린세라믹본부) ;
  • 오세천 (공주대학교 환경공학과)
  • Received : 2012.09.03
  • Accepted : 2012.09.21
  • Published : 2012.09.30

Abstract

Polymers are widely used as membrane material for performing the separation of various gaseous mixtures due to their attractive permselective properties and high processability. The separation characteristics of $CH_4$ and $CO_2$ mixed gas using polyamide composite membrane has been studied in this work. The sample gas was prepared by mixing pure methane and carbon dioxide. Permeation tests were carried out at different operation conditions. Feed flow rates were varied between 800~1000 $cm^3/min$, and the stage cuts were varied between 50~60%. The gas inlet pressure and the temperature were varied as 6 bar and $30{\sim}70^{\circ}C$, respectively. The effects of the above mentioned parameters were investigated to estimate the permeability of $CH_4$ and $CO_2$, and the selectivity of $CO_2$ was also calculated for all conditions. The Arrhenius plots were also performed to obtaine the activation energies of $CH_4$ and $CO_2$ permeabilities.

고분자는 우수한 투과선택도 및 가공성으로 인하여 여러 기체 혼합물의 분리를 위한 막의 소재로 널리 이용되고 있다. 본 연구에서는 polyamide 복합막을 이용하여 $CH_4$$CO_2$ 혼합기체의 분리특성에 관한 연구를 수행하였다. 본 연구를 위한 모사 기체로는 순수 메탄과 이산화탄소를 혼합하여 사용하였으며, 서로 다른 운전조건에서의 투과실험을 수행하였다. 주입 기체의 유량은 800~1000 $cm^3/min$으로 변화시켰으며, stage cuts의 변화는 50~60 %로 하였다. 또한 분리막의 운전 온도는 $30{\sim}70^{\circ}C$에서 변화시켰으며 기체의 초기 주입압력은 6 bar로 설정하였다. 각 실험조건에서 메탄과 이산화탄소의 투과도를 평가하였고 이때 permeate에서의 이산화탄소에 대한 선택도를 함께 평가하였다. 또한 본 연구에서는 Arrhenius plots를 이용하여 메탄과 이산화탄소의 분리막에 대한 투과 활성화 에너지를 얻었다.

Keywords

References

  1. M. Harasimowicz, P. Orluk, G. Zakrzewska-Trznadel, and A. Chmielewski, Application of Polyimide Membranes for Biogas Purification and Enrichments, J. Hazard. Mater., 144(3), 698 (2007).
  2. B. R. Park, D. H. Kim, G. W. Lee, T. S. Hwang, and H. K. Lee, A Study on the Permeance Through Polymer Membranes and Selectivity of CH4/N2, Korean Chem. Eng. Res., 49(4), 498 (2011).
  3. T. B. Ahn, T. H. Park, and I. C. Going, Prediction of Landfill Settlement Using Gas Generation Characteristics, Korean Geotech. Soc., 2(20), 29 (2004).
  4. S. Kumar, S. A. Gaikward, A. V. Shekdar, P. S. Kshirsagar, and R. N. Singh, Estimation Method for National Methane Emission from Solid Waste Landfill, Atmos. Env., 38, 3481 (2004).
  5. N. J. Kim, J. M. Choi, and E. J. Ji, Solvent Selection for the Detection of Siloxanes in Landfill Gas, J. Korean Env, Eng., 29(8), 915 (2007).
  6. J.-S. Ahn and S. M. Lee, A Study on the Separation Characteristics of $CH_4-CO_2$ Mixed Gas by Polyimide Hollow Fiber Membrane, Chemical Engineering, 34(6), 675 (1996).
  7. D. H. Kim, Y. M. An, H. D. Jo, J. S. and H. K. Lee, Studies on the N2/SF6 Permeation Behavior Using the Polyethersulfone Hollow Fiber Membrances, Korean Membr. J., 19(3), 244 (2009).
  8. H. H. Park, B. R. Deshwal, H. D. Jo, W. K. Choi, I. W. Kim, and H. K. Lee, Absorption of Nitrogen Dioxide by PVDF Hollow Fiber Membranes in a G-L Contactor, Desalination, 243, 52 (2009).
  9. H. H. Park, B. R. Deshwal, I. W. Kim, and H. K. Lee, Absorption of $SO_2$ from Flue gas Using PVDF Hollow Fiber Membranes in a Gas-liquid Contactor, J. Membr. Sci., 319, 29 (2008).
  10. Y. M. An, D. H. Kim, H. D. Jo, Y. S. Seo, Y. S. Park, and H. K. Lee, The Permeation Behaviors of H2S/CH4 Using Polyimide Hollow Fiber Membrane, J. Memb. Soc., Korea, 19(4), 261 (2009).
  11. M. L. Cecopieri-Gomez, J. Palacios- Alquisira and, J. M. Dominguez, On the Limits Gas Separation in CO2/CH4, N2/CH4, and CO2/N2 Binary Mixture Using Polyimide Membranes, J. Membr. Sci., 293, 53 (2007).
  12. J. Y. Park and D. R. Paul, Correlation and Prediction of Gas Permeability in Glassy Polymer Membrane Materials vis a Modified Free Volume Based Group Contribution Method, J. Membr. Sci., 125, 23 (1997).
  13. T. H. Kim, W. J. Koros, G. R. Husk, and K. C. O'Brien, Relationship Between Gas Separation Properties and Chemical Structure in a Series of Aromatic Polyimides, J. Membr. Sci., 37, 62 (1988).
  14. A. F. Ismail, T. D. Kusworo, and A. Mustafa, Enhanced Gas Permeation Performance of Polyethersulfone Mixed Matrix Hollow Fiber Membranes Using Novel Dynasylan Ameo Silane Agent, J. Membr. Sci., 319, 306 (2008).
  15. T. Mohammadi, M. T. Moghadam, M. Saeidi, and M. Mahdyarfar, Acid Gas Permeation Through Poly(Ester Urethane Urea) Membrane, Ind. Eng. Chem. Res., 47, 7361 (2008).
  16. G. J. Van Amerongen, "Influence of Structure of Elastomers on Their Permeability to Gases, J. Poylm. Sci., 3, 307 (1950).