Parthenolide Inhibits Ovalbumin-Induced cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression

  • Youn, Hyung-Sun (Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University)
  • Received : 2012.07.08
  • Accepted : 2012.08.16
  • Published : 2012.09.30

Abstract

In recent years, egg allergy has been raised as the most prevalent food hypersensitivity in the pediatric population. One of the major egg allergens is ovalbumin (OVA) which is the major protein in egg white, comprising 54% of its total protein content. Parthenolide isolated from Tanacetum partheniumb has been used to treat many chronic diseases for many years. In the present report, we present biochemical evidence that parthenolide inhibits the nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activation induced by OVA. Parthenolide also inhibits OVA-induced cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression. These data suggest new approaches for the efficient alleviation of the allergic symptoms.

Keywords

References

  1. Bork PM, Schmitz ML, Kuhnt M, Escher C, Heinrich M. Sesquiterpene lactone containing Mexican Indian medicinal plants and pure sesquiterpene lactones as potent inhibitors of transcription factor NF-kappaB. FEBS Lett. 1997. 402: 85-90. https://doi.org/10.1016/S0014-5793(96)01502-5
  2. Flower RJ. The development of COX2 inhibitors. Nat Rev Drug Discov. 2003. 2: 179-191. https://doi.org/10.1038/nrd1034
  3. Green SJ, Meltzer MS, Hibbs JB Jr., Nacy CA. Activated macro-phages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism. J Immunol. 1990. 144: 278-283.
  4. Groenewegen WA, Heptinstall S. A comparison of the effects of an extract of feverfew and parthenolide, a component of feverfew, on human platelet activity in-vitro. J Pharm Pharmacol. 1990. 42: 553-557. https://doi.org/10.1111/j.2042-7158.1990.tb07057.x
  5. Grzanna R, Lindmark L, Frondoza CG. Ginger--an herbal medicinal product with broad anti-inflammatory actions. J Med Food. 2005. 8: 125-132. https://doi.org/10.1089/jmf.2005.8.125
  6. Hanafy KA, Krumenacker JS, Murad F. NO, nitrotyrosine, and cyclic GMP in signal transduction. Med Sci Monit. 2001. 7: 801-819.
  7. Hehner SP, Heinrich M, Bork PM, Vogt M, Ratter F, Lehmann V, Schulze-Osthoff K, Droge W, Schmitz ML. Sesquiterpene lactones specifically inhibit activation of NF-kappa B by preventing the degradation of I kappa B-alpha and I kappa B-beta. J Biol Chem. 1998. 273: 1288-1297. https://doi.org/10.1074/jbc.273.3.1288
  8. Heinrich M, Robles M, West JE, Ortiz de Montellano BR, Rodriguez E. Ethnopharmacology of Mexican asteraceae (Compositae). Annu Rev Pharmacol Toxicol. 1998. 38: 539-565. https://doi.org/10.1146/annurev.pharmtox.38.1.539
  9. Heinrich M, Robles M, West JE, Ortiz de Montellano BR, Rodriguez E. Ethnopharmacology of Mexican asteraceae (Compositae). Annu Rev Pharmacol Toxicol. 1998. 38: 539 -565. https://doi.org/10.1146/annurev.pharmtox.38.1.539
  10. Kun JF, Mordmuller B, Perkins DJ, May J, Mercereau-Puijalon O, Alpers M, Weinberg JB, Kremsner PG. Nitric oxide synthase 2 (Lambarene) (G-954C), increased nitric oxide production, and protection against malaria. J Infect Dis. 2001. 184: 330-336. https://doi.org/10.1086/322037
  11. Lee AN, Park SJ, Jeong AR, Lee JR, Park HJ, Kim SJ, Min IS, Youn HS. Ovalbumin induces cycloxygenase-2 and inducible nitric oxide synthase expression. Korean J Food Sci Technol. 2011. 43: 110-113.
  12. Lee AN, Park SJ, Yun SM, Lee MY, Son BS, Youn HS. Parthenolide Suppresses the Expression of Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Induced by Toll-Like Receptor 2 and 4 Agonists. J. Exp. Biomed Sci. 2010. 16: 39-45.
  13. Mine Y, Yang M. Recent advances in the understanding of egg allergens: basic, industrial, and clinical perspectives. J Agric Food Chem. 2008. 56: 4874-4900. https://doi.org/10.1021/jf8001153
  14. Moncada S. Nitric oxide: discovery and impact on clinical medicine. J R Soc Med. 1999. 92: 164-169.
  15. Murphy JJ, Heptinstall S, Mitchell JR. Randomised double-blind placebo-controlled trial of feverfew in migraine prevention. Lancet. 1988. 2: 189-192.
  16. Oka D, Nishimura K, Shiba M, Nakai Y, Arai Y, Nakayama M, Takayama H, Inoue H, Okuyama A, Nonomura N. Sesquiterpene lactone parthenolide suppresses tumor growth in a xenograft model of renal cell carcinoma by inhibiting the activation of NF-kappaB. Int J Cancer. 2007. 120: 2576-2581. https://doi.org/10.1002/ijc.22570
  17. Palmer RM, Hickery MS, Charles IG, Moncada S, Bayliss MT. Induction of nitric oxide synthase in human chondrocytes. Biochem Biophys Res Commun. 1993. 193: 398-405. https://doi.org/10.1006/bbrc.1993.1637
  18. Park SJ, Shin HJ, Youn HS. Parthenolide inhibits TRIF-dependent signaling pathway of Toll-like receptors in RAW264.7 macrophages. Mol Cells. 2011. 31: 261-265. https://doi.org/10.1007/s10059-011-0032-8
  19. Schinella GR, Giner RM, Recio MC, Mordujovich de Buschiazzo P, Rios JL, Manez S. Anti-inflammatory effects of South American Tanacetum vulgare. J Pharm Pharmacol. 1998. 50: 1069-1074. https://doi.org/10.1111/j.2042-7158.1998.tb06924.x
  20. Sheehan M, Wong HR, Hake PW, Malhotra V, O'Connor M, Zingarelli B. Parthenolide, an inhibitor of the nuclear factor-kappaB pathway, ameliorates cardiovascular derangement and outcome in endotoxic shock in rodents. Mol Pharmacol. 2002. 61: 953-963. https://doi.org/10.1124/mol.61.5.953
  21. Siriwatanametanon N, Fiebich BL, Efferth T, Prieto JM, Heinrich M. Traditionally used Thai medicinal plants: in vitro anti-inflammatory, anticancer and antioxidant activities. J Ethnopharmacol. 2010. 130: 196-207. https://doi.org/10.1016/j.jep.2010.04.036
  22. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003. 3: 768-780. https://doi.org/10.1038/nrc1189
  23. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res. 2001. 480: 243-268.
  24. Turini ME, DuBois RN. Cyclooxygenase-2: a therapeutic target. Annu Rev Med. 2002. 53: 35-57. https://doi.org/10.1146/annurev.med.53.082901.103952
  25. Vallance P. Nitric oxide: therapeutic opportunities. Fundam Clin Pharmacol. 2003. 17: 1-10. https://doi.org/10.1046/j.1472-8206.2003.00124.x
  26. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998. 38: 97-120. https://doi.org/10.1146/annurev.pharmtox.38.1.97
  27. Yang EJ, Chang JH. The extract of Pseudomonas aeruginosa induces the apoptosis of the human colorectal cancer cell line, HCT 116 cells, via mitochondrial pathway. J Exp Biomed Sci. 2012. 18: 16-21.
  28. Youn HS, Lee JY, Fitzgerald KA, Young HA, Akira S, Hwang DH. Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: molecular targets are TBK1 and RIP1 in TRIF complex. J Immunol. 2005. 175: 3339-3346.
  29. Zhao L, Lee JY, Hwang DH. Inhibition of pattern recognition receptor-mediated inflammation by bioactive phytochemicals. Nutr Rev. 2011. 69: 310-320. https://doi.org/10.1111/j.1753-4887.2011.00394.x
  30. Zingarelli B, Sheehan M, Wong HR. Nuclear factor-kappaB as a therapeutic target in critical care medicine. Crit Care Med. 2003. 31: S105-111. https://doi.org/10.1097/00003246-200301001-00015