Molecular Characterization and Prevalence of 16S Ribosomal RNA Methylase Producing Bacteria in Amikacin Resistant Gram-negative Bacilli Isolated from Clinical Specimens

  • Shin, Kyung-A (Department of Laboratory Medicine Bundang Jesaeng Hospital) ;
  • Hwang, Seock-Yeon (Department of Biomedical Laboratory Science, Daejeon University) ;
  • Hong, Seung-Bok (Department of Clinical Laboratory Science, Chungbuk Health & Science University)
  • Received : 2012.08.02
  • Accepted : 2012.08.20
  • Published : 2012.09.30

Abstract

Recently, the prevalence of 16S rRNA methylase conferring high-level resistance to aminoglycosides has been increasing in Gram-negative bacilli globally. We determined the prevalence and genotype of these methylase-producing bacteria, and characterized the co-resistance to ${\beta}$-lactam antibiotics and quinolone in Gram-negative clinical isolates collected in 2010 at a hospital in Korea. Among 65 amikacin-resistant isolates screened from 864 Gram-negative bacilli (GNB), 16S rRNA methylase genes were detected from 49 isolates, including Acinetobacter baumannii (43), Klebsiella pneumoniae (2), Proteus mirabilis (2) and Serratia marcescens (1), Empedobacter brevis (1). All of the 16S rRNA methylase genotype was armA and no variant sequences of amplified PCR products for armA were noted. The 16S rRNA methylase producing bacteria showed much higher resistance to aminoglycoside for Enterobacteriaceae and glucose non-fermenting (NF)-GNB and to imipenem for glucose NF-GNB, than the non-producing isolates. All of the 16S rRNA methylase producing Enterobacteriaceae had the extended-spectrum-${\beta}$-lactamase. In addition, two K. pneumoniae concurrently produced both plasmid-mediated AmpC ${\beta}$-lactamase and qnrB gene. All of the amikacin-resistant A. baumannii (43) co-harbored armA 16S rRNA methylase and $bla_{OXA-23}$ carbapenemase. In conclusion, 16S rRNA methylase producing bacteria were very prevalent among GNB in South Korea, and were commonly associated with co-resistance, including carbapenem and quinolone.

Keywords

References

  1. Adams-Haduch JM, Paterson DL, Sidjabat HE, Pasculle AW, Potoski BA, Muto CA, Harrison LH, Doi Y. Genetic basis of multidrug resistance in Acinetobacter baumannii clinical isolates at a tertiary medical center in Pennsylvania. Antimicrob Agents Chemother. 2008. 52: 3837-3843. https://doi.org/10.1128/AAC.00570-08
  2. Bogaerts P, Galimand M, Bauraing C, Deplano A, Vanhoof R, De Mendonca R, Rodriguez-Villalobos H, Struelens M, Glupczyski Y. Emergence of armA and rmtB aminoglycoside resistance 16S rRNA methylase in Belgium. J Antimicrobial Chemotherapy. 2007. 59: 459-464. https://doi.org/10.1093/jac/dkl527
  3. Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. Multiplex PCR for detection of plasmid-mediared quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother. 2007. 60: 394-397. https://doi.org/10.1093/jac/dkm204
  4. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: twenty two informational supplement (M100-S22). Wayne, PA: CLSI, 2012.
  5. Davis MA, Baker KN, Orfe LH, Shah DH, Besser TE, Call DR. Discovery of a gene conferring multiful-aminoglycoside resistance in Escherichia coli. Antimicrob Agents Chemother. 2010. 47: 2565-2571.
  6. Doi Y, Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycoside. Clin Infect Dis. 2007a. 45: 88-94. https://doi.org/10.1086/518605
  7. Doi Y, de Oliveira GD, Adams J, Paterson DL. Coproduction of novel 16S rRNA methylase rmtD and metallo-${\beta}$-lactamase SPM-1 in a panresistant Pseudomonas aeruginosa isolate from Brazil. Antimicrob Agents Chemother. 2007b. 51: 852-856. https://doi.org/10.1128/AAC.01345-06
  8. Doi Y, Yokoyama, K. Yamane, K, Wachino J, Shibata N, Yagi T, Shibayama K, Kato H, Arakawa Y. Plasmid-mediated 16S rRNA methylase in Serratia marcescens conferring high level resistance to aminoglycosides. Antimicrobial Agents Chemother. 2004. 48: 491-496. https://doi.org/10.1128/AAC.48.2.491-496.2004
  9. Galimand M, Courvalin P, Lambert T. Plasmid-mediated high-level resistance to aminoglycosides in Enterobacteria due to 16S rRNA methylation. Antimicrob Agents Chemother. 2003. 47: 2565-2571. https://doi.org/10.1128/AAC.47.8.2565-2571.2003
  10. Hooper DC. Mechanisms of quinolone resistance. In: Hooper DC and Rubenstein E, eds. Quinolone antimicrobial agents. 3rd ed, 2003. pp. 41-67. American Society for Microbiology Press. Washington DC, USA.
  11. Jarlier V, Nicolas M, Fournier G, Philippon A. Extended spectrum ${\beta}$-lactamases conferring transferable resistance to newer ${\beta}$-lactam agents in Enterobacteriaceae: Hospital prevalence and susceptibility patterns. Rev Infect Dis. 1988. 10: 867-878. https://doi.org/10.1093/clinids/10.4.867
  12. Jeong HW, Son BR, Shin DI, Ryu D, Hong SB, Hand K, Shin KS. Characterization of Acinetobacter baumannii co-producing carbapenemase OXA-23 and OXA-66, and armA 16S ribosomal RNA methylase at a university hospital in South Korea. Korean J Clin Microbiol. 2011. 14: 67-73. https://doi.org/10.5145/KJCM.2011.14.2.67
  13. Kim JW, Heo ST, Jin JS, Choi CH, Lee YC, Jeong YG, Kim SJ, Lee JC. Characterization of Acinetobacter baumannii carrying bla(OXA-23), bla(PER-1) and armA in a Korean hospital. Clin Microbiol Infect. 2008. 14: 716-718. https://doi.org/10.1111/j.1469-0691.2008.02022.x
  14. Lee H, Koh EM, Kim CK, Yum JH, Lee K, Chong Y. Molecular and phenotypic characteristics of 16S rRNA methylase-producing Gram-negative Bacilli. Korean J Clin Microbiol. 2010. 13: 19-26. https://doi.org/10.5145/KJCM.2010.13.1.19
  15. Lee H, Young D, Yum JH, Roh KH, Lee K, Yamane K, Arakawa Y, Chong Y. Dissemination of 16S rRNA methylase-mediated highly amikacin resistant isolates of Klebsiella pneumoniae and Acinetobacter baumannii in Korea. Diagn Microbiol Infect Dis. 2006. 56: 305-312. https://doi.org/10.1016/j.diagmicrobio.2006.05.002
  16. Lee K, Kim MN, Kim JS, Hong HL, Kang JO, Shin JH, Park YJ, Yong D, Jeong SH, Chong Y, KONSAR Group. Further increases in carbapenem, amikacin and fluroquinolone-resistant isolates of Acinetobacter spp. and P. aeruginosa in korea: KONSAR study 2009. Yonsei Med J. 2011. 52: 793-802. https://doi.org/10.3349/ymj.2011.52.5.793
  17. Lee K, Lim YS, Yong D, Yum JH, Chong YS. Evaluation of the Hodge test and the imipenem-EDTA double disk synergy test test for differentiating metallo-${\beta}$-lactamase producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2003. 41: 4623-4629. https://doi.org/10.1128/JCM.41.10.4623-4629.2003
  18. Lee K, Park KH, Jeong SH, Lim HS, Shin JH, Yong D, Ha GY, Chong Y, KONSAR Group. Further increase of vancomycinresistant Enterococcus faecium, amikacin- and fluoroquinolone-resistant Klebsiella pneumoniae, and imipenem-resistant Acinetobacter spp. in Korea: 2003 KONSAR surveillance. Yonsei Med J. 2006. 47: 43-54. https://doi.org/10.3349/ymj.2006.47.1.43
  19. Poole K. Efflux pumps as antimicrobial resistance mechanisms. Ann Med. 2007. 39: 162-176. https://doi.org/10.1080/07853890701195262
  20. Ruiz J. Mechanisms of resistance to quinolones: target alterations, decreased accumulations and DNA gyrase protection. J Antimicrob Chemother. 2003. 51: 1109-1117. https://doi.org/10.1093/jac/dkg222
  21. Song W, Jeong SH, Kim JS, Kim HS, Shin DH, Rho KH, Lee KM. Use of boronic acid disk methods to detect the combined expression of plasmid-mediated AmpC ${\beta}$-lactamases and extened-spectrum-${\beta}$-lactamase in clinical isolates of Klebsiella spp., Salmonella spp., and Proteus mirabilis. Diagn Microbiol Infect Dis. 2007. 57: 315-318. https://doi.org/10.1016/j.diagmicrobio.2006.08.023
  22. Wachino J, Shibayama K, Kurokawa H, Kimura K, Yamane K, Suzuki S, Shibata N, Ike Y, Arakawa Y. Novel plasmid-mediated 16S rRNA $m^{1}A1408$ Methyltransferase, NpmA, found in a clinical isolated Escherichia coli strain resistant to structually diverse aminoglycosides. Antimicrobial Agents Chemother. 2007. 51: 4401-4409. https://doi.org/10.1128/AAC.00926-07
  23. Wachino J, Yamane K, Shibayama K, Kurokawa H, Shibata N, Suzuki S, Doi Y, Kimura K, Ike Y, Arakawa Y. Novel plasmid-mediated 16S rRNA methylase, RmtC, found in a Proteus mirabilis isolate demonstrating extraordinary high-level resistance against various aminoglycosides. Antimicrob Agents Chemother. 2006. 50: 178-184. https://doi.org/10.1128/AAC.50.1.178-184.2006
  24. Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brawn S, Amyes SG, Livermore DM. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents. 2006. 27: 351-353. https://doi.org/10.1016/j.ijantimicag.2006.01.004
  25. Yamane K, Wachino J, Suzuki S, Kato H, Shinbayama K, Kimura K. 16S rRNA methylase-producing, gram-negative pathogens, Japan. Emerging Infect Dis. 2007. 13: 642-646. https://doi.org/10.3201/eid1304.060501
  26. Yan JJ, Wu JJ, Ko WC, Tsai SH, Chuang CL, Wu HM, Lu YJ, Li JD. Plasmid-mediated 16S rRNA methylases conferring high-level aminoglycoside resistance in Escherichia coli and Klebsiella pneumoniae isolates from two Taiwanese hospitals. J Antimicrob Chemother. 2004. 54: 1007-1012. https://doi.org/10.1093/jac/dkh455
  27. Yao JDC, Moellenring Jr RC. Antibacterial Agents (Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA. Eds). 2007. 9th ed, pp1077-1113. ASM Press. Washington, DC, USA.
  28. Yokoyama K, Doi Y, Yamane K, Kurokawa H, Shibata N, Shibayama K. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet. 2003. 362: 1888-1893. https://doi.org/10.1016/S0140-6736(03)14959-8
  29. Yu YS, Zhou H, Yang Q, Chen YG, Li LJ. Widespread occurrence of aminoglycoside resistance due to armA methylase in imipenem-resistant Acinetobacter baumannii isolates in China. J Antimicrob Chemother. 2007. 60: 454-455. https://doi.org/10.1093/jac/dkm208