DOI QR코드

DOI QR Code

Effect of the Size and Amount of SiC on the Microstructures and Thermal Conductivities of ZrB2-SiC Composite Ceramics

ZrB2-SiC 복합세라믹스의 미세구조와 열전도도에 미치는 SiC 크기와 첨가량의 영향

  • Kim, Seong-Won (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kwon, Chang-Sup (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Oh, Yoon-Suk (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sung-Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyung-Tae (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 김성원 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 권창섭 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 오윤석 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 이성민 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 김형태 (한국세라믹기술원 이천분원 엔지니어링세라믹센터)
  • Received : 2012.09.17
  • Accepted : 2012.10.10
  • Published : 2012.10.28

Abstract

This paper reports the microstructures and thermal conductivities of $ZrB_2$-SiC composite ceramics with size and amount of SiC. We fabricated sintered bodies of $ZrB_2$-x vol.% SiC (x=10, 20, 30) with submicron and nanosized SiC densified by spark plasma sintering. Microstructure retained the initial powder size of especially SiC, except the agglomeration of nanosized SiC. For sintered bodies, thermal conductivities were examined. The observed thermal conductivity values are 40~60 W/mK, which is slightly lower than the reported values. The relation between microstructural parameter and thermal conductivity was also discussed.

Keywords

References

  1. W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy and J. A. Zaykoski: J. Am. Ceram. Soc., 90 (2007) 1347. https://doi.org/10.1111/j.1551-2916.2007.01583.x
  2. S. Q. Guo: J. Euro. Ceram. Soc., 29 (2009) 995. https://doi.org/10.1016/j.jeurceramsoc.2008.11.008
  3. M. J. Gasch, D. T. Ellerby and S. M. Johnson: Handbook of Ceramic Composites, N. P. Bansal (Ed.), Kluwer Academic Publishers, Boston/Dordrecht/London (2005), 197.
  4. J. W. Zimmermann, G. E. Hilmas, W. G. Fahrenholtz, R. B. Dinwiddie, W. D. Porter and H. Wang: J. Am. Ceram. Soc., 91 (2008) 1405. https://doi.org/10.1111/j.1551-2916.2008.02268.x
  5. C.-S. Kwon, J.-M. Chae, H.-T. Kim, K.-J. Kim and S. Kim, J. Kor. Powd. Met. Inst., 18 (2011) 562 (Korean). https://doi.org/10.4150/KPMI.2011.18.6.562
  6. T. A. Jackson, D. R. Eklund and A. J. Fink: J. Mater. Sci., 39 (2004) 5905. https://doi.org/10.1023/B:JMSC.0000041687.37448.06
  7. Y.-M. Chiang, D. Birnie III and W. D. Kingery: Physical ceramics, John Wiley & Sons, Inc. (1997) 474.
  8. D. He and N. N. Ekere: J. Phys. D-Appl. Phys., 37 (2004) 1848. https://doi.org/10.1088/0022-3727/37/13/019
  9. A. Bellosi, F. D. Monteverde and D. Sciti: Int. J. Appl. Ceram. Technol., 3 (2006) 32. https://doi.org/10.1111/j.1744-7402.2006.02060.x
  10. S.-K. L. Kang: Sintering-densification, grain growth, and microstructure, Elsevier Butterworth-Heinemann, New York (2005) 91.
  11. S. Q. Guo, T. Nishimura, Y. Kagawa and J.-M. Yang: J. Am. Ceram. Soc., 91 (2008) 2848. https://doi.org/10.1111/j.1551-2916.2008.02587.x
  12. F. L. Riley: Structural ceramics-fundamentals and case studies, Cambridge, United Kingdom (2009) 186.
  13. D. S. Smith, S. Fayette, S. Grandjean, C. Martin, R. Telle and T. Tonnessen: J. Am. Ceram. Soc., 86 (2003) 105. https://doi.org/10.1111/j.1151-2916.2003.tb03285.x
  14. S. Baik and P. F. Becher: J. Am. Ceram. Soc., 70 (1987) 527. https://doi.org/10.1111/j.1151-2916.1987.tb05699.x

Cited by

  1. Thermal Properties of Diamond Aligned Electroless Ni Plating Layer/Oxygen Free Cu Substrates vol.22, pp.2, 2015, https://doi.org/10.4150/KPMI.2015.22.2.134