DOI QR코드

DOI QR Code

Biodegradation of Synthetic Plastics

합성 플라스틱의 생분해

  • Song, Yoon-Seok (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Hee-Uk (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Ja-Hyun (Department of Chemical and Biological Engineering, Korea University) ;
  • Choi, Han-Suk (Department of Chemical and Biological Engineering, Korea University) ;
  • Choi, Ung-Su (Center for Urban Energy Systems, KIST) ;
  • Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
  • 송윤석 (고려대학교 화공생명공학과) ;
  • 이희욱 (고려대학교 화공생명공학과) ;
  • 이자현 (고려대학교 화공생명공학과) ;
  • 최한석 (고려대학교 화공생명공학과) ;
  • 최웅수 (한국과학기술연구원 도시에너지시스템연구단) ;
  • 김승욱 (고려대학교 화공생명공학과)
  • Received : 2012.07.30
  • Accepted : 2012.08.21
  • Published : 2012.08.31

Abstract

Synthetic plastics are important in many branches of industry. Although synthetic plastics provide numerous benefits, they also cause a significant environmental pollution problem because of their non-readily-biodegradability. Biodegradation may provide solution to the problem, but not enough is known about the biodegradation mechanisms of synthetic plastics. This review has been written to provide an overview of the current state of synthetic plastics (polyethylene, polyurethane, nylon, polyvinyl alcohol) biodegradation. Several biodegradation mechanisms of a few selected synthetic plastics are also presented.

Keywords

References

  1. Yun, Y. H. and S. D. Yoon (2008) Preparation and physical properties of biodegradable films using starch and PVA. J. Adv. Eng. Tech. 1: 173-177.
  2. Chung, M. S., W. H. Lee, Y. S. You, H. Y. Kim, and K. M. Park (2003) Manufacturing multi-degradable food packaging films and their degradability. Korean J. Food Sci. Technol. 35: 877-883.
  3. Kim, M. N., S. H. Lee, W. G. Kim, and H. Y. Weon (2007) Screening of microorganisms with high poly (butylenes succinate-co-butylene adipate)-degrading activity. Korean J. Environ. Biol. 25: 267-272.
  4. Leja, K. and G. Lewandowica (2010) Polymer biodegradation and biodegradable polymers- a review. Pol. J. Environ. Stud. 19: 255-266.
  5. Krzan, A., S. Hemjinda, S. Miertus, A. Corti, and E. Chiellini (2006) Standardization and certification in the area of environmentally degradable plastics. Polym. Degrad. Stabil. 91: 2819-2833. https://doi.org/10.1016/j.polymdegradstab.2006.04.034
  6. Mohan, S. K. and T. Srivastava (2010) Microbial deterioration and degradation of polymeric materials. J. Biochem. Tech. 2: 210-215.
  7. Gu, J. D. (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int. Biodeterior. Biodegrad. 52: 69-91. https://doi.org/10.1016/S0964-8305(02)00177-4
  8. Gautam, R., A. S. Bassi, and E. K. Yanful (2007) A review of biodegradation of synthetic plastic and foams. Appl. Biochem. Biotechnol. 141: 85-108. https://doi.org/10.1007/s12010-007-9212-6
  9. Yamada-Onodera, K., H. Mukumoto, Y. Katsuyaya, A. Saiganji, and Y. Tani (2001) Degradation of polyethylene by fungus, Penicillium simplicissimum YK. Polym. Degrad. Stabil. 72: 323-327. https://doi.org/10.1016/S0141-3910(01)00027-1
  10. Seneviratne, G., N. S. Tennakoon, M. L. M. A. W. Weerasekara, and K. A. Nandasena (2006) Polyethylene biodegradation by a developed Penicillium-Bacillus biofilm. Curr. Sci. 90: 1-10.
  11. Volke-Sepulveda, T., G. Saucedo-Castaneda, M. Gutierrez-Rojas, A. Manzur, and E. Favela-Torres (2002) Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus niger. J. Appl. Polym. Sci. 83: 305-314. https://doi.org/10.1002/app.2245
  12. Manzur, A., M. Limón-González, and E. Favela-Torres (2004) Biodegradation of physicochemically treated LDPE by a consortium of filamentous fungi. J. Appl. Polym. Sci. 92: 265-271. https://doi.org/10.1002/app.13644
  13. Sudhakar, M., M. Doble, P. S. Murthy, and R. Venkatesan (2008) Marine microbe-mediated biodegradation of low- and highdensity polyethylenes. Int. Biodeterior. Biodegrad. 61: 203-213. https://doi.org/10.1016/j.ibiod.2007.07.011
  14. Usha, R., T. Sangeetha, and M. Palaniswamy (2011) Screening of polyethylene degrading microorganisms from garbage soil. Libyan Agric. Res. Cen. J. Intl. 2: 200-204.
  15. Shah, A. A., F. Hasan, A. Hameed, and S. Ahmed (2008) Biological degradation of plastics: a comprehensive review. Biotechnol. Adv. 226: 246-265.
  16. Cosgrove, L., P. L. McGeechan, G. D. Robson, and P. S. Handley (2007) Fungal communities associated with degradation of polyester polyurethane in soil. Appl. Environ. Microbiol. 73: 5817-5824. https://doi.org/10.1128/AEM.01083-07
  17. Barratt, S. R., A. R. Ennos, M. Greenhalgh, G. D. Robson, and P. S. Handley (2003) Fungi are the predominant micro-organisms responsible for degradation of soil-buried polyester polyurethane over a range of soil water holding capacities. J. Appl. Microbiol. 95: 78-85. https://doi.org/10.1046/j.1365-2672.2003.01961.x
  18. Jonathan, R. R., J. Huang, P. Anand, K. Kucera, A. G. Sandoval, K. W. Dantzler, D. Hickman, J. Jee, F. M. Kimovec, D. Koppstein, D. H. Marks, P. A. Mittermiller, S. J. Núñez, M. Santiago, M. A. Townes, M. Vishnevetsky, N. E. Williams, M. P. N. Vargas, L. A. Boulanger, C. Bascom-Slack, and S. A. Strobel (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl. Environ. Microbiol. 77: 6076-6084. https://doi.org/10.1128/AEM.00521-11
  19. Oceguera-Cervantes, A., A. Carrillo-Garcia, N. Lopez, S. Bolanos-Nunez, M. J. Curz-Gomez, C. Wacher, and H. Loza-Tavera (2007) Characterization of the polyurethanolytic activity of two Alicycliphilus sp. Strains able to degrade polyurethane and N-methylpyrrolidone. Appl. Environ. Microbiol. 73: 6214-6223. https://doi.org/10.1128/AEM.01230-07
  20. Rowe, L. and G. T. Howard (2002) Growth of Bacillus subtilis on polyurethane and the purification and characterization of a polyurethanase-lipase enzyme. Int. Biodeterior. Biodegrad. 50: 33-40. https://doi.org/10.1016/S0964-8305(02)00047-1
  21. Howard, G. T., J. Vicknair, and R. I. Mackie (2001) Sensitive plate assay for screening and detection of bacterial polyurethanase activity. Lett. Appl. Microbiol. 32: 211-214. https://doi.org/10.1046/j.1472-765x.2001.00887.x
  22. Gautam, R., A. S. Bassi, and E. K. Yanful (2007) Candida rugosa lipase-catalyzed polyurethane degradation in aqueous medium. Biotechnol. Lett. 29: 1081-1086. https://doi.org/10.1007/s10529-007-9354-1
  23. Negoso, S. (2000) Biodegradation of nylon oliomers. Apply Microbiol. Biotechnol. 54: 461-466. https://doi.org/10.1007/s002530000434
  24. Hashimoto, K., M. Sudo, K. Ohta, T. Sugimura, H. Yamada, and T. Aoki (2002) Biodegradation of nylon4 and its blend with nylon6. J. Appl. Polym. Sci. 86: 2307-2311. https://doi.org/10.1002/app.11235
  25. Yamano, N., A. Nakayama, N. Kawasaki, N. Yamamoto, and S. Aiba (2008) Mechanism and characterization of polyamide 4 degradation by Pseudomonas sp.. J. Polym. Environ. 16: 141-146. https://doi.org/10.1007/s10924-008-0090-y
  26. Chonde, S. G., S. G. Chonde, P. R. Bhosale, D. B. Nakade, and P. D. Raut (2012) Studies on degradation of synthetic polymer nylon 6 by fungus Trametes versicolor NCIM 1086. Int. J. Environ. Sci. 2: 2435-2442.
  27. Sudhakar, M., C. Priyadarshini, M. Doble, P. S. Murthy, and R. Venkatesan (2007) Marine bacteria mediated degradation of nylon 66 and 6. Int. Biodeterior. Biodegrad. 60: 144-151. https://doi.org/10.1016/j.ibiod.2007.02.002
  28. Tomita, K., N. Ikeda, and A. Ueno (2003) Isolation and characterization of a thermophilic bacterium, Geobacillus thermocatenulatus, degrading nylon 12 and nylon 66. Biotechnol. Lett. 25: 1743-1746. https://doi.org/10.1023/A:1026091711130
  29. Shimao, M. (2001) Biodegradation of plastics. Curr. Opin. Biotechnol. 12: 242-247. https://doi.org/10.1016/S0958-1669(00)00206-8
  30. Flieger, M., M. Kantorová, A. Prell, T. Řezanka, and J. Votruba (2003) Biodegradable plastics from renewable sources. Folia Microbiol. 48: 27-44. https://doi.org/10.1007/BF02931273
  31. Choi, K., C. Park, S. Kim, W. Lyoo, S. H. Lee, and J. Lee (2004) Polyvinyl alcohol degradation by Microbacterium barkeri KCCM 10507 and Paenibacillus amylolyticus KCCM 10508 in dyeing wastewater. J. Microbiol. Biotechnol. 14: 1009-1013.
  32. Yamatsu, A., R. Matsumi, H. Atomi, and T. Imanaka (2006) Isolation and characterization of a novel poly (vinyl alcohol)-degrading bacterium, Sphingopyxis sp. PVA3. Appl. Microbiol. Biotechnol. 72: 804-811. https://doi.org/10.1007/s00253-006-0351-4
  33. Qian, D., G. Du, and J. Chen (2004) Isolation and culture characterization of a new polyvinyl alcohol-degrading strain: Penicillium sp. WSH02-21. World J. Microbiol. Biotechnol. 20: 587-591. https://doi.org/10.1023/B:WIBI.0000043172.83610.08
  34. Zhang, Y., Y. Li, W. Shen, D. Liu, and J. Chen (2006) A new strain, Streptomyces venezuelae GY1, producing a poly (vinyl alcohol)-degrading enzyme. World J. Microbiol. Biotechnol. 22: 625-628. https://doi.org/10.1007/s11274-005-9081-5
  35. Albertsson, A. C., S. O. Andersson, and S. Karlsson (1987) The mechanism of biodegradation of polyethylene. Polym. Degrad. Stabil. 18: 73-87. https://doi.org/10.1016/0141-3910(87)90084-X
  36. Hadad, D., S. Geresh, and A. Sivan (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J. App. Microbial. 98: 1093-1100. https://doi.org/10.1111/j.1365-2672.2005.02553.x
  37. Sivan, A., A. R. Thompson, and V. Pavlov (2006) Biofilm development of the polyethylene degrading bacterium Rhodococcus ruber. Appl. Microbiol. Biotechnol. 72: 346-352. https://doi.org/10.1007/s00253-005-0259-4
  38. Arutchelvi, J., M. Sudhakar, A. Arkatkar, M. Doble, S. Bhaduri, and P. V. Uppara (2008) Biodegradation of polyethylene and polypropylene. Indian J. Biotechnol. 7: 9-22.
  39. Nanda, S., S. S. Sahu, and J. Abraham (2010) Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp.. J. Appl. Sci. Environ. Manage. 14: 57-60.
  40. Kawai, F. and X. Hu (2009) Biochemistry of microbial polyvinyl alcohol degradation. Appl. Microbiol. Biotechnol. 84: 227-237. https://doi.org/10.1007/s00253-009-2113-6
  41. Zhao, J. H., X. Q. Wang, J. Zeng, G. Yang, F. H. Shi, and Q. Yan (2005) Biodegradation of poly (butylenes succinate-co-butylene adipate) by Aspergillus versicolor. Polym. Degrad. Stabil. 90: 173-179. https://doi.org/10.1016/j.polymdegradstab.2005.03.006
  42. Kim, M. N. (2004) Soil microorganism degrading polycaprolactone. Korean J. Environ. Biol. 22: 400-404.
  43. Elbanna, K., T. Lütke-Eversloh, D. Jendrossek, H. Luftmann, and A. Strinüchel (2004) Studies on the biodegradability of polythioester copolymers and homopolymers by polyhydroxyalkanoate (PHA)-degrading bacteria and PHA depolymerases. Arch. Microbiol. 182: 212-225.
  44. Wang, Y., Y. Inagawa, T. Saito, K. Kasuya, Y. Doi, and Y. Inoue (2002) Enzymatic hydrolysis of bacterial poly (3-hydroxybutyrateco- 3hydroxypropionate) s by poly (3-hydroxyalkanoate) depolymerase from Acidovorax Sp. TP4. Biomacromolecules 3: 828-834. https://doi.org/10.1021/bm020019p
  45. Romen, F., S. Reinhardt, and D. Jendrossek, (2004) Thermotolerant poly (3-hydroxybutyrate)-degrading bacteria from hot compost and characterization of the PHB depolymerase of Schlegelella sp. KB1a. Arch. Microbiol. 182: 157-164.
  46. Lee, A. R. and M. N. Kim (2000) Biodegradation characteristics of poly-3-hydroxybutyrate, $sky-green^{(R)}$ and $Mater-Bi^{(R)}$ by soil bacteria. Kor. J. Microbiol. 36: 299-305.
  47. Nomura, N., T. Deguchi, Y. Shigeno-Akutsu, T. Nakajima-Kambe, and T. Nakahara (2001) Gene structures and catalytic mechanisms of microbial enzymes able to biodegrade the synthetic solid polymers nylon and polyester polyurethane. Biotechnol. Genet. Eng. Rev. 18: 125-147. https://doi.org/10.1080/02648725.2001.10648011

Cited by

  1. Polymer Film-Based Screening and Isolation of Polylactic Acid (PLA)-Degrading Microorganisms vol.27, pp.2, 2012, https://doi.org/10.4014/jmb.1610.10015