References
- Jung, S.; Regan, J. M. Appl. Environ. Microbiol. 2011, 77, 564. https://doi.org/10.1128/AEM.01392-10
- Logan, B. E.; Regan, J. M. Trends in Microbiology 2006, 14, 512. https://doi.org/10.1016/j.tim.2006.10.003
- Marcus, A. K.; Torres, C. I.; Rittmann, B. E. Biotechnol. Bioeng. 2007, 98, 1171. https://doi.org/10.1002/bit.21533
- Pham, T. H.; Aelterman, P.; Verstraete, W. Trends in Biotechnology 2009, 27, 168. https://doi.org/10.1016/j.tibtech.2008.11.005
- Torres, C. I.; Marcus, A. K.; Lee, H. S.; Parameswaran, P.; Krajmalnik-Brown, R.; Rittmann, B. E. FEMS Microbiology Reviews 2010, 34, 3. https://doi.org/10.1111/j.1574-6976.2009.00191.x
- Ha, P. T.; Moon, H.; Kim, B. H.; Ng, H. Y.; Chang, I. S. Biosens. Bioelectron. 2010, 25, 1629. https://doi.org/10.1016/j.bios.2009.11.023
- Wang, X.; Feng, Y.; Ren, N.; Wang, H.; Lee, H.; Li, N.; Zhao, Q. Electrochimica Acta 2009, 54, 1109. https://doi.org/10.1016/j.electacta.2008.07.085
- Hong, Y.; Call, D. F.; Werner, C. M.; Logan, B. E. Biosens. Bioelectron. 2011, 28, 71. https://doi.org/10.1016/j.bios.2011.06.045
- Manohar, A. K.; Bretschger, O.; Nealson, K. H.; Mansfeld, F. Electrochimica Acta 2008, 53, 3508. https://doi.org/10.1016/j.electacta.2007.12.002
- Marsili, E.; Rollefson, J. B.; Baron, D. B.; Hozalski, R. M.; Bond, D. R. Appl. Environ. Microbiol. 2008, 74, 7329. https://doi.org/10.1128/AEM.00177-08
- Ramasamy, R. P.; Ren, Z. Y.; Mench, M. M.; Regan, J. M. Biotechnol. Bioeng. 2008, 101, 101. https://doi.org/10.1002/bit.21878
- Borole, A. P.; Aaron, D.; Hamilton, C. Y.; Tsouris, C. Environ. Sci. Technol. 2010, 44, 2740. https://doi.org/10.1021/es9032937
- von Canstein, H.; Ogawa, J.; Shimizu, S.; Lloyd, J. R. Appl. Environ. Microbiol. 2008, 74, 615. https://doi.org/10.1128/AEM.01387-07
- Jung, S.; Mench, M. M.; Regan, J. M. Environ. Sci. Technol. 2011, 45, 9069. https://doi.org/10.1021/es201737g
- He, Z.; Mansfeld, F. Energy & Environmental Science 2009, 2, 215. https://doi.org/10.1039/b814914c
- Ouitrakul, S.; Sriyudthsak, M.; Charojrochkul, S.; Kakizono, T. Biosens. Bioelectron. 2007, 23, 721. https://doi.org/10.1016/j.bios.2007.08.012
- Cheng, C.-H.; Hung, C.-H.; Lee, K.-S.; Liau, P.-Y.; Liang, C.-M.; Yang, L.-H.; Lin, P.-J.; Lin, C.-Y. Inter. J. Hydrogen Energy 2008, 33, 5242. https://doi.org/10.1016/j.ijhydene.2008.05.017
- Logan, B.; Cheng, S.; Watson, V.; Estadt, G. Environ. Sci. Technol. 2007, 41, 3341. https://doi.org/10.1021/es062644y
- Jung, S.; Regan, J. M. Appl. Microbiol. Biotechnol. 2007, 77, 393. https://doi.org/10.1007/s00253-007-1162-y
- Macdonald, J. R. Ann. Biomed. Eng. 1992, 20, 289. https://doi.org/10.1007/BF02368532
- Wagner, N. J. Appl. Electrochem. 2002, 32, 859. https://doi.org/10.1023/A:1020551609230
- Larminie, J.; Dicks, A. Fuel Cell System Explained; Wiley: West Sussex, 2002.
- Bard, A.; Faulkner, L. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: 2001.
- Xing, D.; Cheng, S.; Regan, J. M.; Logan, B. E. Biosens. Bioelectron. 2009, 25, 105. https://doi.org/10.1016/j.bios.2009.06.013
- Bond, D. R.; Holmes, D. E.; Tender, L. M.; Lovley, D. R. Science 2002, 295, 483. https://doi.org/10.1126/science.1066771
- Lee, H.-S.; Parameswaran, P.; Kato-Marcus, A.; Torres, C. I.; Rittmann, B. E. Water Res. 2008, 42, 1501. https://doi.org/10.1016/j.watres.2007.10.036
- Logan, B. E. Nat. Rev. Micro. 2009, 7, 375. https://doi.org/10.1038/nrmicro2113
- Mahadevan, R.; Bond, D. R.; Butler, J. E.; Esteve-Nunez, A.; Coppi, M. V.; Palsson, B. O.; Schilling, C. H.; Lovley, D. R. Appl. Environ. Microbiol. 2006, 72, 1558. https://doi.org/10.1128/AEM.72.2.1558-1568.2006
- Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R. Proc. Natl. Acad Sci. U S A 2008, 105, 3968. https://doi.org/10.1073/pnas.0710525105
- Mench, M. M. Fuel Cell Engines; John Wiley and Sons, Inc.: New York, 2008.
Cited by
- Electricity Generation by Shewanella decolorationis S12 without Cytochrome c vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.01115
- A facile method for preparation of efficient oxygen reduction catalyst for a microbial fuel cell cathode vol.22, pp.1, 2018, https://doi.org/10.1007/s12205-017-0111-2
- Improved structures of stainless steel current collector increase power generation of microbial fuel cells by decreasing cathodic charge transfer impedance vol.23, pp.4, 2018, https://doi.org/10.4491/eer.2017.171
- Assessment of microbial diversity bias associated with soil heterogeneity and sequencing resolution in pyrosequencing analyses vol.52, pp.7, 2012, https://doi.org/10.1007/s12275-014-3636-9
- Recent Trends of Oxygen Reduction Catalysts in Microbial Fuel Cells: A Review vol.41, pp.11, 2019, https://doi.org/10.4491/ksee.2019.41.11.657
- Oxygen-deficient TiO2 decorated carbon paper as advanced anodes for microbial fuel cells vol.366, pp.None, 2012, https://doi.org/10.1016/j.electacta.2020.137468
- Polypropylene biofilm carrier and fabricated stainless steel mesh supporting activated carbon: Integrated configuration for performances enhancement of microbial fuel cell vol.46, pp.None, 2021, https://doi.org/10.1016/j.seta.2021.101268
- Semiconducting Minerals Participated Extracellular Electron Transfer Process in High-Altitude Red Soil from Gansu, China vol.38, pp.10, 2021, https://doi.org/10.1080/01490451.2021.1977435
- Improvement of air cathode performance in microbial fuel cells by using catalysts made by binding metal-organic framework and activated carbon through ultrasonication and solution precipitation vol.424, pp.None, 2012, https://doi.org/10.1016/j.cej.2021.130388