DOI QR코드

DOI QR Code

Synthesis and Characterization of H3PO4 Doped Poly(benzimidazole-co-benzoxazole) Membranes for High Temperature Polymer Electrolyte Fuel Cells

  • Lee, Hye-Jin (School of Chemical and Biological Engineering, Seoul National University (SNU)) ;
  • Lee, Dong-Hoon (Fuel Cell Center, Korea Institute of Science and Technology (KIST)) ;
  • Henkensmeier, Dirk (Fuel Cell Center, Korea Institute of Science and Technology (KIST)) ;
  • Jang, Jong-Hyun (Fuel Cell Center, Korea Institute of Science and Technology (KIST)) ;
  • Cho, Eun-Ae (Fuel Cell Center, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Hyoung-Juhn (Fuel Cell Center, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Hwa-Yong (School of Chemical and Biological Engineering, Seoul National University (SNU))
  • Received : 2012.03.27
  • Accepted : 2012.07.11
  • Published : 2012.10.20

Abstract

Poly(benzimidazole-co-benzoxazole)s (PBI-co-PBO) are synthesized by polycondensation reaction with 3,3'-diaminobenzidine, terephthalic acid and 3,3'-dihydroxybenzidine or 4,6-diaminoresorcinol in polyphosphoric acid (PPA). All polymer membranes are prepared by the direct casting method (in-situ fabrication). The introduction of benzoxazole units (BO units) into a polymer backbone lowers the basic property and $H_3PO_4$ doping level of the copolymer membranes, resulting in the improvement of mechanical strength. The proton conductivity of $H_3PO_4$ doped PBI-co-PBO membranes decrease as a result of adding amounts of BO units. The maximum tensile strength reaches 4.1 MPa with a 10% molar ratio of BO units in the copolymer. As a result, the $H_3PO_4$ doped PBI-co-PBO membranes could be utilized as alternative proton exchange membranes in high temperature polymer electrolyte fuel cells.

Keywords

References

  1. Kim, Y. M.; Choi, S. H.; Lee, H. C.; Hong, M. Z.; Kim, K.; Lee, H.-I. Electrochimica Acta 2004, 49, 4787. https://doi.org/10.1016/j.electacta.2004.05.034
  2. Li, Q.; He, R.; Jensen, J. O.; Bjerrum, N. J. Fuel Cells 2004, 4, 147. https://doi.org/10.1002/fuce.200400020
  3. Weng, D.; Wainright, J. S.; Landau, U.; Savinell, R. F. J. Electrochem. Soc. 1996, 143, 1260. https://doi.org/10.1149/1.1836626
  4. Vengatesan, S.; Kim, H.; Lee, S.; Cho, E.; Yongha, H.; Oh, I.; Hong, S.; Lim, T. International Journal of Hydrogen Energy 2008, 33, 171. https://doi.org/10.1016/j.ijhydene.2007.09.021
  5. Carbone, A.; Pedicini, R.; Saccà, A.; Gatto, I.; Passalacqua, E. J. Power Sources 2008, 178, 661. https://doi.org/10.1016/j.jpowsour.2007.10.023
  6. Haile, S. M.; Lentz, G.; Kreuer, K.-D.; Maier, J. Solid State Ionics 1995, 77, 128. https://doi.org/10.1016/0167-2738(94)00291-Y
  7. Kim, Y. S.; Wang, F.; Hickner, M.; Zawodzinski, T. A.; McGrath, J. E. J. Membr. Sci. 2003, 212, 263. https://doi.org/10.1016/S0376-7388(02)00507-0
  8. Belieres, J.-P.; Gervasio, D.; Angell, C. A. Chem. Commun. 2006, 4799.
  9. Susan, M. A. B. H.; Noda, A.; Mitsushima, S.; Watanabe, M. Chem. Commun. 2003, 938.
  10. Nakamoto, H.; Noda, A.; Hayamizu, K.; Hayashi, S.; Hamaguchi, H.-O.; Watanabe, M. J. Phys. Chem. C 2007, 111, 1541. https://doi.org/10.1021/jp0661286
  11. Jayakody, J. R. P.; Chung, S. H.; Durantino, L.; Zhang, H.; Xiao, L.; Benicewicz, B. C.; Greenbaum, S. G. J. Electrochem. Soc. 2007, 154, B242. https://doi.org/10.1149/1.2405726
  12. Wainright, J. S.; Wang, J.-T.; Weng, D.; Savinell, R. F.; B, M. L. J. Electrochem. Soc. 1995, 142, L121. https://doi.org/10.1149/1.2044337
  13. Ma, Y. L.; Wainright, J. S.; Litt, M. H.; Savinell, R. F. J. Electrochem. Soc. 2004, 151, A8. https://doi.org/10.1149/1.1630037
  14. Kim, J.; Kim, H.; Lim, T.; Lee, H. J. Power Sources 2007, 170, 275. https://doi.org/10.1016/j.jpowsour.2007.03.082
  15. Yu, S.; Xiao, L.; Benicewicz, B. C. Fuel Cells 2008, 8, 165. https://doi.org/10.1002/fuce.200800024
  16. Wang, J.-T.; Savinell, R. F.; Wainright, J.; Litt, M.; Yu, H. Electrochimica Acta 1996, 41, 193. https://doi.org/10.1016/0013-4686(95)00313-4
  17. Li, Q.; Jensen, J. O.; Savinell, R. F.; Bjerrum, N. J. Progress in Polymer Science 2009, 34, 449. https://doi.org/10.1016/j.progpolymsci.2008.12.003
  18. Kim, T.-H.; Lim, T.-W.; Lee, J.-C. J. Power Sources 2007, 172, 172. https://doi.org/10.1016/j.jpowsour.2007.07.040
  19. Xiao, L.; Zhang, H.; Scanlon, E.; Ramanathan, L. S.; Choe, E.-W.; Rogers, D.; Apple, T.; Benicewicz, B. C. Chem. Mater. 2005, 17, 5328. https://doi.org/10.1021/cm050831+
  20. Xiao, L.; Zhang, H.; Jana, T.; Scanlon, E.; Chen, R.; Choe, E.-W.; Ramanathan, L. S.; Yu, S.; Benicewicz, B. C. Fuel Cells 2004, 5, 287.
  21. Lee, J. W.; Lee, D. Y.; Kim, H.-J.; Nam, S. Y.; Choi, J. J.; Kim, J.- Y.; Jang, J. H.; Cho, E.; Kim, S.-K.; Hong, S.-A. J. Membr. Sci. 2010, 357, 130. https://doi.org/10.1016/j.memsci.2010.04.010
  22. Qingfeng, L.; Hjuler, H. A.; Bjerrum, N. J. Journal of Applied Electrochemistry 2001, 31, 773. https://doi.org/10.1023/A:1017558523354
  23. Lee, H.-J.; Kim, B. G.; Lee, D. H.; Park, S. J.; Kim, Y.; Lee, J. W.; Henkensmeier, D.; Nam, S. W.; Kim, H.-J.; Kim, H.; Kim, J.-Y. International Journal of Hydrogen Energy 2011, 36, 5521. https://doi.org/10.1016/j.ijhydene.2011.02.014
  24. Fang, J.; Guo, X.; Harada, S.; Watari, T.; Tanaka, K.; Kita, H.; Okamoto, K.-i. Macromolecules 2002, 35, 9022. https://doi.org/10.1021/ma020005b
  25. Gomadam, P. M.; Weidnern, J. W. International Journal of Energy Research 2005, 29, 1133. https://doi.org/10.1002/er.1144

Cited by

  1. Tuning the oxygen reduction activity of the Pt–Ni nanoparticles upon specific anion adsorption by varying heat treatment atmospheres vol.16, pp.27, 2014, https://doi.org/10.1039/c4cp00187g
  2. Synthesis and Characterization of Sulfonated Polybenzoxazole for High Temperature Proton Exchange Membranes vol.821-822, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.821-822.1261
  3. Studies on Ionic Conduction in Ce0.95Eu0.05P2O7 at Intermediate Temperatures vol.35, pp.5, 2014, https://doi.org/10.5012/bkcs.2014.35.5.1465