DOI QR코드

DOI QR Code

Effects of Surface Nitrification on Thermal Conductivity of Modified Aluminum Oxide Nanofibers-Reinforced Epoxy Matrix Nanocomposites

  • Kim, Byung-Joo (Smart Composite Material Research Team, Carbon Valley R&D Division, Jeonju Institute of Machinery and Carbon Composites) ;
  • Bae, Kyong-Min (Department of Chemistry, Inha University) ;
  • An, Kay-Hyeok (Smart Composite Material Research Team, Carbon Valley R&D Division, Jeonju Institute of Machinery and Carbon Composites) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2012.05.07
  • Accepted : 2012.07.10
  • Published : 2012.10.20

Abstract

Aluminum oxide ($Al_2O_3$) nanofibers were treated thermally under an ammonia ($NH_3$) gas stream balanced by nitrogen to form a thin aluminum nitride (AlN) layer on the nanofibers, resulting in the enhancement of thermal conductivity of $Al_2O_3$/epoxy nanocomposites. The micro-structural and morphological properties of the $NH_3$-assisted thermally-treated $Al_2O_3$ nanofibers were characterized by X-ray diffraction (XRD) and atomic force microscopy (AEM), respectively. The surface characteristics and pore structures were observed by X-ray photoelectron spectroscopy (XPS), Zeta-potential and $N_2$/77 K isothermal adsorptions. From the results, the formation of AlN on $Al_2O_3$ nanofibers was confirmed by XRD and XPS. The thermal conductivity (TC) of the modified $Al_2O_3$ nanofibers/epoxy composites increased with increasing treated temperatures. On the other hand, the severely treated $Al_2O_3$/epoxy composites showed a decrease in TC, resulting from a decrease in the probability of heat-transfer networks between the filler and matrix in this system due to the aggregation of nanofiber fillers.

Keywords

References

  1. Shen, S.; Henry, A.; Tong, J.; Zheng, R.; Chen, G. Nature Nanotechnol. 2010, 5, 251. https://doi.org/10.1038/nnano.2010.27
  2. Rolinski, E. J.; Sweeney, T. L. J. Chem. Eng. Data 1968, 13, 203. https://doi.org/10.1021/je60037a018
  3. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D. Nano Lett. 2008, 8, 902. https://doi.org/10.1021/nl0731872
  4. Yang, R.; Chen, G.; Dresselhaus, M. S. Nano Lett. 2005, 5, 1111. https://doi.org/10.1021/nl0506498
  5. Terao, T.; Zhi, C.; Bando, Y.; Mitome, M.; Tang, C.; Golberg, D. J. Phys. Chem. C 2010, 114, 4340.
  6. Sanada, K.; Tada, Y.; Shindo, Y. Compos. A 2009, 40, 724. https://doi.org/10.1016/j.compositesa.2009.02.024
  7. Fu, J. F.; Shi, L. Y.; Zhong, Q. D.; Chen, Y.; Chen, L. Y. Polym. Adv. Technol. 2011, 22, 1032. https://doi.org/10.1002/pat.1638
  8. Hong, J. H.; Lee, J.; Jung, D.; Shim, S. E. Thermochim. Acta 2011, 512, 34. https://doi.org/10.1016/j.tca.2010.08.019
  9. Garrett, K. W.; Rosenberg, H. M. J. Phys. D 1974, 7, 1247. https://doi.org/10.1088/0022-3727/7/9/311
  10. Kistler, S. S.; Caldwell, A. G. Ind. Eng. Chem. 1934, 26, 658. https://doi.org/10.1021/ie50294a016
  11. Cui, W.; Du, F.; Zhao, J.; Zhang, W.; Yang, Y.; Xie, X.; Mai, Y. W. Carbon 2011, 49, 495. https://doi.org/10.1016/j.carbon.2010.09.047
  12. Singh, A. K. Adv. Powder Technol. 2010, 21, 609. https://doi.org/10.1016/j.apt.2010.02.002
  13. Lim, W.; Craciun, V.; Siebein, K.; Gila, B. P.; Norton, D. P.; Pearton, S. J.; Ren, F. Appl. Surf. Sci. 2008, 254, 2396.
  14. Popovska, N.; Alkhateeb, E.; Fröba, A. P.; Leipertz, A. Ceram. Int. 2010, 36, 2203. https://doi.org/10.1016/j.ceramint.2010.05.028
  15. Hong, J.; Choi, H. S.; Lee, K. S.; Shim, S. E. Polym. Int. 2012, 61, 639. https://doi.org/10.1002/pi.3224
  16. Zhou, W. Thermochim. Acta 2011, 512, 183. https://doi.org/10.1016/j.tca.2010.10.003
  17. Jung, W. S. Bull. Korean Chem. Soc. 2009, 30, 1563. https://doi.org/10.5012/bkcs.2009.30.7.1563
  18. Tang, C.; Bando, Y.; Liu, C.; Fan, S.; Zhang, J.; Ding, X.; Golberg, D. J. Phys. Chem. B 2006, 110, 10354. https://doi.org/10.1021/jp0607014
  19. Zhou, W.; Qi, S.; Tu, C.; Zhao, H.; Wang, C.; Kou, J. J. Appl. Polym. Sci. 2007, 104, 1312. https://doi.org/10.1002/app.25789
  20. Tan, B. J.; Xiao, Y.; Suib, S. L. Chem. Mater. 1992, 4, 648. https://doi.org/10.1021/cm00021a029
  21. Oh, S. M.; Park, D. W. Thin Solid Films 1998, 316, 189. https://doi.org/10.1016/S0040-6090(98)00413-1
  22. Kim, J. K.; Jung, W. S. J. Ceram. Soc. Japan 2011, 119, 351. https://doi.org/10.2109/jcersj2.119.351
  23. Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309. https://doi.org/10.1021/ja01269a023
  24. Lippens, B. C.; de Boer, J. H. J. Catal. 1965, 4, 319 https://doi.org/10.1016/0021-9517(65)90307-6
  25. Do, D. D. Adsorption Analysis: Equilibria and Kinetics; Imperial College Press: London, 1998.
  26. Galvez, M. E.; Hischier, I.; Frei, A.; Steinfeld, A. Ind. Eng. Chem. Res. 2008, 47, 2231. https://doi.org/10.1021/ie071244w
  27. Gálvez, M. E.; Frei, A.; Halmann, M.; Steinfeld, A. Ind. Eng. Chem. Res. 2007, 46, 2047. https://doi.org/10.1021/ie061551m
  28. Kuchibhatla, S.; Rodak, L. E.; Korakakis, D. Thin Solid Films 2010, 519, 117. https://doi.org/10.1016/j.tsf.2010.07.076
  29. Sanz-Hervás, A.; Iborra, E.; Clement, M.; Sangrador, J.; Aguilar, M. Diam. Relat. Mater. 2003, 12, 1186. https://doi.org/10.1016/S0925-9635(02)00228-5
  30. Park, J. S.; Lee, H. J.; Choi, S. J.; Geckeler, K. E.; Cho, J.; Moon, S. H. J. Colloid Interface Sci. 2003, 259, 293. https://doi.org/10.1016/S0021-9797(02)00095-4
  31. Liao, H. M.; Sodhi, R. N. S.; Coyle, T. W. J. Vac. Sci. Technol. A 1993, 11, 2681. https://doi.org/10.1116/1.578626
  32. Kim, B. J.; Park, S. J. J. Colloid Interface Sci. 2010, 342, 575. https://doi.org/10.1016/j.jcis.2009.10.045
  33. Kim, B. J.; Park, S. J. Int. J. Hydrogen Energy 2011, 36, 648. https://doi.org/10.1016/j.ijhydene.2010.09.097
  34. Kim, Y. Y.; Yun, J.; Lee, Y. S.; Kim, H. I. Carbon Lett. 2011, 12, 48. https://doi.org/10.5714/CL.2011.12.1.048
  35. Heo, G. Y.; Seo, M. K.; Oh, S. Y.; Choi, K. E.; Park, S. J. Carbon Lett. 2011, 12, 53. https://doi.org/10.5714/CL.2011.12.1.053

Cited by

  1. Tuning of thermal and dielectric properties for epoxy composites filled with electrospun alumina fibers and graphene nanoplatelets through hybridization vol.3, pp.27, 2015, https://doi.org/10.1039/C5TC01552A
  2. Sol–gel template preparation of alumina nanofillers for reinforcing the epoxy resin vol.80, pp.2, 2016, https://doi.org/10.1007/s10971-016-4126-9
  3. Studies on Preparation and Characterization of Aluminum Nitride-Coated Carbon Fibers and Thermal Conductivity of Epoxy Matrix Composites vol.7, pp.8, 2017, https://doi.org/10.3390/coatings7080121
  4. Preparation and properties of dopamine reduced graphene oxide and its composites of epoxy vol.131, pp.2, 2012, https://doi.org/10.1002/app.39754