DOI QR코드

DOI QR Code

Ni/ZnO-based Adsorbents Supported on Al2O3, SiO2, TiO2, ZrO2: A Comparison for Desulfurization of Model Gasoline by Reactive Adsorption

  • Meng, Xuan (The State Key Laboratory of Chemical Engineering, East China University of Science and Technology) ;
  • Huang, Huan (The State Key Laboratory of Chemical Engineering, East China University of Science and Technology) ;
  • Weng, Huixin (The State Key Laboratory of Chemical Engineering, East China University of Science and Technology) ;
  • Shi, Li (The State Key Laboratory of Chemical Engineering, East China University of Science and Technology)
  • Received : 2012.04.13
  • Accepted : 2012.07.04
  • Published : 2012.10.20

Abstract

Reactive adsorption desulfurization (RADS) experiments were conducted over a series of commercial metal oxide supports ($Al_2O_{3-}$, $SiO_{2-}$, $TiO_{2-}$ and $ZrO_{2-}$) supported Ni/ZnO adsorbents. The adsorbents were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), and Fourier transform infrared spectroscopy (FTIR) in order to find out the influence of specific types of surface chemistry and structural characteristics on the sulfur adsorptive capacity. The desulfurization performance of all the studied adsorbents decreased in the following order: Ni/ZnO-$TiO_2$ > Ni/ZnO-$ZrO_2$ > Ni/ZnO-$SiO_2$ > Ni/ZnO-$Al_2O_3$. Ni/ZnO-$TiO_2$ shows the best performance and the three hour sulfur capacity can achieve 12.34 mg S/g adsorbent with a WHSV of $4h^{-1}$. Various characterization techniques suggest that weak interaction between active component and support component, high dispersion of NiO and ZnO, high reducibility and large total Lewis acidity of the adsorbents are important factors in achieving better RADS performance.

Keywords

References

  1. Sentorun-Shalaby, C.; Saha, S. K.; Ma, X. L.; Song, C. S. Appl. Catal. B: Environmental 2011, 101, 718. https://doi.org/10.1016/j.apcatb.2010.11.014
  2. Hernández-Maldonado, A. J.; Yang, R. T. J. Am. Chem. Soc. 2004, 126, 992. https://doi.org/10.1021/ja039304m
  3. Yang, R. T.; Hernandez-Maldonado, A. J.; Cannella, W. Science 2003, 301, 79. https://doi.org/10.1126/science.1085088
  4. Song, C. S.; Ma, X. L. Appl. Catal. B: Environmental 2003, 41, 207. https://doi.org/10.1016/S0926-3373(02)00212-6
  5. Lu, H. Y.; Gao, J. B.; Jiang, Z. X.; Jing, F.; Yang, Y. X.; Wang, G.; Li, C. J. Catal. 2006, 239, 369 https://doi.org/10.1016/j.jcat.2006.01.025
  6. Huleaa, V.; Fajulaa, F.; Bousquet, J. J. Catal. 2001, 198, 179. https://doi.org/10.1006/jcat.2000.3149
  7. Bosmann, A.; Datsevich, L.; Jess, A.; Lauter, A.; Schmitz, C.; Wasserscheid, P. Chem. Commun. 2001, 2494.
  8. Jochen, E.; Peter, W.; Andreas, J. Green Chem. 2004, 6, 316. https://doi.org/10.1039/b407028c
  9. Gray, K. A.; Pogrebinsky, O. S.; Mrachlko, G. T.; Xi, L.; Monticello, D. J.; Squires, C. H. Nat. Biotechnol. 1996, 14, 1705. https://doi.org/10.1038/nbt1296-1705
  10. Tawara, K.; Nishimura, T.; Iwanami, H. Sekiyu Gakkaishi. 2000, 43, 114. https://doi.org/10.1627/jpi1958.43.114
  11. Tawara, K.; Nishimura, T.; Iwanami, H.; Nishimoto, T.; Hasuike, T. Sekiyu Gakkaishi. 2001, 44, 43. https://doi.org/10.1627/jpi1958.44.43
  12. Tang, H.; Li, Q.; Song, Z. Y.; Li, W. L.; Xing, J. M. Catal. Commun. 2011, 12, 1079. https://doi.org/10.1016/j.catcom.2011.03.022
  13. Babich, I. V.; Moulijin, J. A. Fuel 2003, 82, 607. https://doi.org/10.1016/S0016-2361(02)00324-1
  14. Bezverkhyy, I.; Ryzhikov, A.; Gadacz, G.; Bellat J. P. Catal. Today 2008, 130, 199. https://doi.org/10.1016/j.cattod.2007.06.038
  15. Ryzhikov, A.; Bezverkhyy, I.; Bellat, J. P. Appl. Catal. B: Environmental 2008, 84, 766. https://doi.org/10.1016/j.apcatb.2008.06.009
  16. Huang, L. C.; Wang, G. F.; Qin, Z. F.; Du, M. X.; Dong, M.; Ge, H.; Wu, Z. W.; Zhao, Y. D.; Ma, C. Y.; Hu, T. D.; Wang, J. G. Catal. Commun. 2010, 11, 592. https://doi.org/10.1016/j.catcom.2010.01.001
  17. Hussam, H. I.; Raphael, O. I. Energy & Fuels 2008, 22, 878. https://doi.org/10.1021/ef7005904
  18. Fan, J. X.; Wang, G.; Sun, Y.; Xu, C. M.; Zhou, H. J.; Zhou, G. L.; Gao, J. S. Ind. Eng. Chem. Res. 2010, 49, 8450. https://doi.org/10.1021/ie100923v
  19. Sasaoka, E.; Sada, N. Ind. Eng. Chem. Res. 1999, 38, 958. https://doi.org/10.1021/ie980569x
  20. Tang, X. L.; Shi, L. Langmuir 2011, 27, 11999. https://doi.org/10.1021/la2025654
  21. Li, J.; Tian, W. P.; Shi, L. Ind. Eng. Chem. Res. 2010, 49, 11837. https://doi.org/10.1021/ie101072v
  22. Ho, S. C.; Chou, T. C. Ind. Eng. Chem. Res. 1996, 34, 2279.
  23. Li, C. P.; Chen, Y. W. Thermochim. Acta 1995, 256, 457. https://doi.org/10.1016/0040-6031(94)02177-P
  24. Barroso, M. N.; Gomez, M. F.; Arrúa, L. A.; Abello, M. C. Appl. Catal. A: General 2006, 304, 116. https://doi.org/10.1016/j.apcata.2006.02.033
  25. Álvarez, R.; Tóffolo, A.; Pérez, V.; Linares, C. F. Catal. Lett. 2010, 137, 150. https://doi.org/10.1007/s10562-010-0337-9
  26. Larrubia, M. A.; Ramirez, J.; Busca, G. A. Applied Catalysis A: General 2002, 224, 167. https://doi.org/10.1016/S0926-860X(01)00769-4

Cited by

  1. Desulfurization of Liquid Hydrocarbon Streams via Adsorption Reactions by Silver-Modified Bentonite vol.52, pp.18, 2013, https://doi.org/10.1021/ie400227r
  2. Correlation between Physicochemical Properties of Various Commercial TiO2 Supports and NH3-SCR Activities of Ce/Ti Catalysts vol.26, pp.2, 2015, https://doi.org/10.14478/ace.2015.1012
  3. Ultra-deep desulfurization via reactive adsorption on nickel and zinc species supported on activated carbon vol.24, pp.6, 2017, https://doi.org/10.1007/s10934-017-0412-3
  4. Cu2+ Modified Silicalite-1/NaY Structure for the Adsorption Desulfurization of Dimethyl Disulfide from Methyl tert-Butyl Ether vol.57, pp.28, 2012, https://doi.org/10.1021/acs.iecr.8b01211
  5. Core-Shell Zeolite Composite with Silicalite-1/NaY Structure for the Adsorption Desulfurization of Dimethyl Disulfide from Methyl tert-Butyl Ether vol.57, pp.48, 2012, https://doi.org/10.1021/acs.iecr.8b04733
  6. Alkali-Treatment of Silicalite-1/CuY Core-Shell Structure for the Adsorption Desulfurization of Dimethyl Disulfide from Methyl tert-Butyl Ether vol.58, pp.4, 2012, https://doi.org/10.1021/acs.iecr.8b06463
  7. Selective Adsorption of Dimethyl Disulfide on Acid-Treated CuYH@Silicalite-1 Core-Shell Structure: Methyl tert-Butyl Ether as a Competition Component vol.58, pp.37, 2019, https://doi.org/10.1021/acs.iecr.9b03079