DOI QR코드

DOI QR Code

Putative fructose-1,6-bisphosphate aldolase 1 (AtFBA1) affects stress tolerance in yeast and Arabidopsis

  • Moon, Seok-Jun (Molecular breeding division, National Academy of Agricultural Science, RDA) ;
  • Shin, Dong-Jin (Molecular breeding division, National Academy of Agricultural Science, RDA) ;
  • Kim, Beom-Gi (Molecular breeding division, National Academy of Agricultural Science, RDA) ;
  • Byun, Myung-Ok (Molecular breeding division, National Academy of Agricultural Science, RDA)
  • Received : 2012.06.01
  • Accepted : 2012.06.07
  • Published : 2012.06.30

Abstract

Glycolysis is responsible for the conversion of glucose into pyruvate and for supplying reducing power and several metabolites. Fructose-1,6-bisphosphate aldolase (AtFBA1), a central enzyme in the glycolysis pathway, was isolated by functional complementation of the salt-sensitive phenotype of a calcineurin (CaN)-deficient yeast mutant. Under high salinity conditions, aldolase activity and the concentration of NADH were compromised. However, expression of AtFBA1 maintained aldolase activity and the NADH level in yeast cells. AtFBA1 shares a high degree of sequence identity with known class I type aldolases, and its expression was negatively regulated by stress conditions including NaCl. The fusion protein GFP-AtFBA1 was localized in the cytosol of Arabidopsis protoplasts. The seed germination and root elongation of AtFBA1 knock-out plants exhibited sensitivity to ABA and salt stress. These results indicate that AtFBA1 expression and aldolase activity is important for stress tolerance in yeast and plants.

Keywords

References

  1. Arenas-Huertero F., Arroyo A., Zhou L., Sheen J., and Leon P. (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14:2085-2096
  2. Baier M., Hemmann G., Holman R., Corke F., Card R., Smith C., Rook F. and Bevan M.W. (2004) Characterization of mutants in Arabidopsis showing increased sugar-specific gene expression, growth, and developmental responses. Plant Physiol 134:81-91 https://doi.org/10.1104/pp.103.031674
  3. Chew Y.H., and Halliday K.J. (2011) A stress-free walk from Arabidopsis to crops. Curr Opin Biotechnol 22:281-286 https://doi.org/10.1016/j.copbio.2010.11.011
  4. Cho Y.H. and Yoo S.D. (2011) Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana. PLoS Genet 7, e1001263 https://doi.org/10.1371/journal.pgen.1001263
  5. Cho Y.H., Yoo S.D. and Sheen J. (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127: 579-589 https://doi.org/10.1016/j.cell.2006.09.028
  6. Compagno C., Ranzi B.M. and Martegani E. (1991) The promoter of Saccharomyces cerevisiae FBA1 gene contains a single positive upstream regulatory element. FEBS Lett 293: 97-100 https://doi.org/10.1016/0014-5793(91)81160-A
  7. Fan W., Zhang Z. and Zhang Y. (2009) Cloning and molecular characterization of fructose-1,6-bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulacastrum. Plant Cell Rep 28:975-984 https://doi.org/10.1007/s00299-009-0702-6
  8. Finkelstein R.R. and Gibson S.I. (2002) ABA and sugar interactions regulating development: cross-talk or voices in a crowd? Curr Opin Plant Biol 5:26-32 https://doi.org/10.1016/S1369-5266(01)00225-4
  9. Gong P., Zhang J., Li H., Yang C., Zhang C., Zhang X., Khurram Z., Zhang Y., Wang T., Fei Z. and Ye Z. (2010) Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. J Exp Bot 61:3563-3575 https://doi.org/10.1093/jxb/erq167
  10. Grant C.M., Quinn K.A. and Dawes I.W. (1999) Differential protein S-thiolation of glyceraldehyde-3-phosphate dehydrogenase isoenzymes influences sensitivity to oxidative stress. Mol Cell Biol 19:2650-2656 https://doi.org/10.1128/MCB.19.4.2650
  11. Haake V., Zrenner R., Sonnewald U. and Stitt M. (1998) A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants. Plant J 14:147-157 https://doi.org/10.1046/j.1365-313X.1998.00089.x
  12. Halford N.G. and Hey S.J. (2009) Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem J 419:247-259 https://doi.org/10.1042/BJ20082408
  13. Jang J.C., Leon P., Zhou L. and Sheen J. (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5-19 https://doi.org/10.1105/tpc.9.1.5
  14. Jin X.F., Xiong A.S., Peng R.H., Liu J.G., Gao F., Chen J.M. and Yao, Q.H. (2010) OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis. BMB Rep 43:34-39 https://doi.org/10.5483/BMBRep.2010.43.1.034
  15. Konishi H., Yamane H., Maeshima M. and Komatsu S. (2004) Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedling. Plant Mol Biol 56: 839-848 https://doi.org/10.1007/s11103-004-5920-2
  16. Kushwah S., Jones A.M. and Laxmi A. (2011) Cytokinin interplay with ethylene, auxin, and glucose signaling controls Arabidopsis seedling root directional growth. Plant Physiol 156:1851-1866 https://doi.org/10.1104/pp.111.175794
  17. Lorentzen E., Siebers B., Hensel R. and Pohl E. (2004) Structure, function and evolution of the Archaeal class I fructose-1,6-bisphosphate aldolase. Biochem Soc Trans 32:259-263 https://doi.org/10.1042/BST0320259
  18. Melcher K., Ng L.M., Zhou X.E., Soon F.F., Xu Y., Suino- Powell K.M., Park S.Y., Weiner J.J., Fujii H., Chinnusamy V., Kovach A., Li J., Wang Y., Peterson F.C., Jensen D.R., Yong E.L., Volkman B.F., Cutler S.R., Zhu J.K. and Xu H.E. (2009) A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature 462:602-608 https://doi.org/10.1038/nature08613
  19. Miyagawa Y., Tamoi M. and Shigeoka S. (2001) Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat Biotechnol 19:965-969 https://doi.org/10.1038/nbt1001-965
  20. Moore B., Zhou L., Rolland F., Hall Q., Cheng W.H., Liu Y.X., Hwang I., Jones T. and Sheen J. (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332-336 https://doi.org/10.1126/science.1080585
  21. Munoz-Bertomeu J., Anoman A.D., Toujani W., Cascales-Minana B., Flores-Tornero M. and Ros R. (2011) Interactions between abscisic acid and plastidial glycolysis in Arabidopsis. Plant Signal Behav 6:157-159 https://doi.org/10.4161/psb.6.1.14312
  22. Nishimura N., Sarkeshik A., Nito K., Park S.Y., Wang A., Carvalho P.C., Lee S., Caddell D.F., Cutler S.R., Chory J., Yates J.R. and Schroeder J.I. (2010) PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J 61:290-299
  23. Obiadalla-Ali H., Fernie A.R., Lytovchenko A., Kossmann J. and Lloyd J.R. (2004) Inhibition of chloroplastic fructose 1,6-bisphosphatase in tomato fruits leads to decreased fruit size, but only small changes in carbohydrate metabolism. Planta 219:533-540
  24. Park S.Y., Fung P., Nishimura N., Jensen D.R., Fujii H., Zhao Y., Lumba S., Santiago J., Rodrigues A., Chow T.F., Alfred S.E., Bonetta D., Finkelstein R., Provart N.J., Desveaux D., Rodriguez P.L., McCourt P., Zhu J.K., Schroeder J.I., Volkman B.F. and Cutler S.R. (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068-1071
  25. Price J., Li T.C., Kang S.G., Na J.K. and Jang J.C. (2003) Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol 132:1424-1438 https://doi.org/10.1104/pp.103.020347
  26. Quan R., Hu S., Zhang Z., Zhang H. and Huang R. (2010) Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol J 8:476-488 https://doi.org/10.1111/j.1467-7652.2009.00492.x
  27. Rao S.R., Ford K.L., Cassin A.M., Roessner U., Patterson J.H. and Bacic, A. (2010) Proteomic and metabolic profiling of rice suspension culture cells as a model to study abscisic acid signaling response pathways in plants. J Proteome Res 9: 6623-6634 https://doi.org/10.1021/pr100788m
  28. Shin D., Koo Y.D., Lee J., Lee H.J., Baek D., Lee S., Cheon C.I., Kwak S.S., Lee S.Y. and Yun D.J. (2004) Athb-12, a homeobox-leucine zipper domain protein from Arabidopsis thaliana, increases salt tolerance in yeast by regulating sodium exclusion. Biochem Biophys Res Commun 323:534-540 https://doi.org/10.1016/j.bbrc.2004.08.127
  29. Shin D., Moon S.J., Han S., Kim B.G., Park S.R., Lee S.K., Yoon H.J., Lee H.E., Kwon H.B., Baek D., Yi B.Y. and Byun M.O. (2011) Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance. Plant Physiol 155:421-432 https://doi.org/10.1104/pp.110.163634
  30. Skirycz A., and Inze D. (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21:197-203 https://doi.org/10.1016/j.copbio.2010.03.002
  31. Wang R.S., Pandey S., Li, S., Gookin T.E., Zhao Z., Albert R. and Assmann, S.M. (2011) Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics 12:216 https://doi.org/10.1186/1471-2164-12-216
  32. Yamada S., Komori T., Hashimoto A., Kuwata S., Imaseki H. and Kubo T. (2000) Differential expression of plastidic aldolase genes in Nicotiana plants under salt stress. Plant Sci 154: 61-69 https://doi.org/10.1016/S0168-9452(00)00188-6

Cited by

  1. Hop ( Humulus lupulus L.) response mechanisms in drought stress: Proteomic analysis with physiology vol.105, 2016, https://doi.org/10.1016/j.plaphy.2016.03.026
  2. Assessment of shared alleles in drought-associated candidate genes among southern California white oak species (Quercus sect. Quercus) vol.19, pp.1, 2018, https://doi.org/10.1186/s12863-018-0677-9