DOI QR코드

DOI QR Code

Decolorization of a Dye by Immobilized Lignin Degrading Enzymes Generated from Transformants of Merulius tremellosus Fr.

아교버섯 형질전환체가 생산한 리그닌분해 고정화효소에 의한 염료 탈색

  • Min, Dong-Suk (Department of Biochemistry, Kangwon National University) ;
  • Ryu, Sun-Hwa (Division of Wood Chemistry and Microbiology, Korea Forest Research Institute) ;
  • Kim, Myung-Kil (Division of Wood Chemistry and Microbiology, Korea Forest Research Institute) ;
  • Choi, Hyoung-T. (Department of Biochemistry, Kangwon National University)
  • 민동숙 (강원대학교 생화학과) ;
  • 유선화 (국립산림과학원 화학미생물학과) ;
  • 김명길 (국립산림과학원 화학미생물학과) ;
  • 최형태 (강원대학교 생화학과)
  • Received : 2012.09.03
  • Accepted : 2012.09.26
  • Published : 2012.09.30

Abstract

Lignin degrading enzymes from white rot fungi show broad substrate specificities, and therefore they can degrade variety of recalcitrant compounds. We have used three different protocols for the generation of immobilized laccase and manganese peroxidase crude enzymes from the genetically transformed strains of Merulius tremellosus Fr. These immobilized enzymes were used in the decolorization of Remazol Brilliant Blue R (RBBR), and they showed about 75% decolorization rates during the 48 h reactions. Although the decolorization efficiency decreased by 10-15% after a repeated use of the immobilized enzymes, these can be reused in various degrading reactions.

백색부후균류가 가지는 리그닌 분해효소들은 기질특이성이 넓기 때문에 다양한 난분해성 화합물들을 분해할 수 있다. 본 실험에서는 3가지 다른 방법을 사용하여 laccase와 manganese peroxidase가 각각 도입된 아교버섯 형질전환체의 배양 상등액 효소를 고정화 효소로 만들어 대표적 염료의 하나인 Remazol Brilliant Blue R (RBBR)의 탈색을 실험하였다. 그 결과 알긴산을 효소 용액과 직접 반응하여 만든 고정화 효소에서 48시간 반응 후 약 75% 탈색을 보였다. 비록 한번 사용했던 고정화 효소를 재사용하였을 경우 탈색능이 10-15% 정도 감소되었으나 본 실험에서 제시한 방법이 리그닌 분해효소의 고정화 효소 활용에 기여할 것으로 기대한다.

Keywords

References

  1. Baldrian, P. 2006. Fungal laccases-occurrence and properties. FEMS Microbiol. Rev. 30, 215-242. https://doi.org/10.1111/j.1574-4976.2005.00010.x
  2. Cheong, S., Yeo, S., Song, H-G., and Choi, H.T. 2006. Determination of laccase gene expression during degradation of 2,4,6-trinitrotoloene and its catabolic intermediates in Trametes versicolor. Microbiol. Res. 161, 316-320. https://doi.org/10.1016/j.micres.2005.12.001
  3. Kim, J., Yeo, S., Kim, M.K., and Choi, H.T. 2008. Removal of estrogenic activity from endocrine-disrupting chemicals by purified laccase of Phlebia tremellosa. FEMS Microbiol. Lett. 284, 172-175. https://doi.org/10.1111/j.1574-6968.2008.01189.x
  4. Kum, H., Lee, S., Ryu S., and Choi, H.T. 2010. Dye removal by Phlebia tremellosa and lignin degrading enzyme transformants. Kor. J. Microbiol. 46, 93-95.
  5. Mogharabi, M., Nassiri-Koopaei, N., Bozorgi-Koushalshahi, M., Naffisi-Varcheh, N., Bagherzadeh, G., and Faramarzi, M.A. 2012. Immobilization of laccase in alginate-gelatin mixed gel and decolorization of synthetic dyes. Bioinorg. Chem. doi:10.1155/2012/823830.
  6. Songulashvili, G., Jimenez-Tobon, G.A., Jaspers, C., and Penninckx, M.J. 2012. Immobilized laccase of Cerrena unicolor for elimination of endocrine disruptor micropollutants. Fungal Biol. 116, 883-889. https://doi.org/10.1016/j.funbio.2012.05.005
  7. Stanescu, M.D., Fogorasi, M., Shaskolskiy, B.L., Gavrilas, S., and Lozinsky, V.I. 2010. New potential biocatalysts by laccase immobilization in PVA cryogel type carrier. Appl. Biochem. Biotechnol. 160, 1947-1954. https://doi.org/10.1007/s12010-009-8755-0
  8. Yeo, S., Kim. M.K., and Choi, H.T. 2008. Increased expression of laccase by the addition of phthalates in Phlebia tremellosa. FEMS Microbiol. Lett. 278, 72-77. https://doi.org/10.1111/j.1574-6968.2007.00971.x