DOI QR코드

DOI QR Code

A Subthreshold Slope and Low-frequency Noise Characteristics in Charge Trap Flash Memories with Gate-All-Around and Planar Structure

  • Lee, Myoung-Sun (Inter -University Semiconductor Research Center (ISRC), and School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Joe, Sung-Min (Inter -University Semiconductor Research Center (ISRC), and School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Yun, Jang-Gn (Semiconductor R&D Center of Samsung Electronics Company Ltd.) ;
  • Shin, Hyung-Cheol (Inter -University Semiconductor Research Center (ISRC), and School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Park, Byung-Gook (Inter -University Semiconductor Research Center (ISRC), and School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Park, Sang-Sik (Department of Electronics Engineering, Sejong University) ;
  • Lee, Jong-Ho (Inter -University Semiconductor Research Center (ISRC), and School of Electrical Engineering and Computer Science, Seoul National University)
  • 투고 : 2011.10.31
  • 발행 : 2012.09.30

초록

The causes of showing different subthreshold slopes (SS) in programmed and erased states for two different charge trap flash (CTF) memory devices, SONOS type flash memory with gate-all-around (GAA) structure and TANOS type NAND flash memory with planar structure were investigated. To analyze the difference in SSs, TCAD simulation and low-frequency noise (LFN) measurement were fulfilled. The device simulation was performed to compare SSs considering the gate electric field effect to the channel and to check the localized trapped charge distribution effect in nitride layer while the comparison of noise power spectrum was carried out to inspect the generation of interface traps ($N_{IT}$). When each cell in the measured two memory devices is erased, the normalized LFN power is increased by one order of magnitude, which is attributed to the generation of $N_{IT}$ originated by the movement of hydrogen species ($h^*$) from the interface. As a result, the SS is degraded for the GAA SONOS memory device when erased where the $N_{IT}$ generation is a prominent factor. However, the TANOS memory cell is relatively immune to the SS degradation effect induced by the generated $N_{IT}$.

키워드

참고문헌

  1. J.-D. Lee, S.-H. Hur, and J.-D Choi, "Effects of Floating-Gate Interference on NAND Flash Memory Cell operation," IEEE Electron Device letters, vol . 23, no. 5, pp. 264-266, 2002. https://doi.org/10.1109/55.998871
  2. Y. Wang, M. White, "An analytical retention model for SONOS nonvolatile memory devices in the excess electron state," Solid-State Elect.. vol. 49, no, pp. 97-107, 2005. https://doi.org/10.1016/j.sse.2004.06.009
  3. S. D. Suk, S.-Y. Lee, S.-M. Kim, E.-J. Yoon, M.-S Kim, M. L, C. W. Oh, K. H. Yeo, S. H. Kim, D.-S. Shin, K.-H. Lee, H. S. Park, J. N. Han, C. J. Park, J.-B. Park, D.-W. Kim, D.-W. Kim, D. P, and B.-I. Ryu, "High Performance 5nm radius Twin Silicon Nanowire MOSFET(TSNWFET) : Fabrication on Bulk Si Wafer, Characteristics, and Reliability", Technical Digest of IEDM, pp. 717-713, 2005.
  4. K. H. Yeo, S. D. Suk, M. L. Li, Y.-Y Yeoh, K. H. Cho, K.-H Hong, S. Yun, M. S. Lee, N. Cho, K. Lee, D. H, B. Park, D.-W. Kim, D. Park, and B.-I. Ryu, "Gate-All-Around (GAA) Twin Silicon Nanowire MOSFET (TSNWFET) with 15nm Length Gate and 4nm Radius Nanowires", Technical Digest of IEDM, pp. 539-542, 2006.
  5. Y. Park, J. Choi, C. Kang, C. Lee, C. Lee, Y. Shin, B. Choi, J. Kim, S. Jeon, J. Sel, J. Park, K. Choi, T. Yoo, J. Sim, and K. Kim, "Highly Manufacturable 32Gb Multi - level NAND Flash Memory with 0.0098 ${\mu}m^2$ Cell Size using TANOS(Si - Oxide - $Al_2O_3$ - TaN) Cell Technology", Technical Digest of IEDM, 346900, 2006.
  6. A. Fayrushin, K. Seol, J. Na, S. Hur, J. Choi and K. Kim, "The New Program/Erase Cycling Degradation Mechanism of NAND Flash Memory Devices", Technical Digest of IEDM, pp. 823-826, 2009.
  7. L. Larcher, G. Verzellesi, P. Pavan, E. Lusky, I. Bloom and B. Eitan, "Impact of Programming Charge Distribution on Threshold Voltage and Subthreshold Slope of NROM Memory Cells", IEEE Trans. Electron Devices, vol. 49, no. 11, pp. 1939-1946, 2002. https://doi.org/10.1109/TED.2002.804726
  8. H.-T. Lue, T.-H. Hsu, S.-Y. Wang, Y.-H. Hsiao, E.-K. Lai, L.-W. Yang, T. Yang, K.-C. Chen, K.-Y. Hsieh, R. Liu, and C.-Y. Lu, "Understanding STI Edge Fringing Field Effect on the Scaling of Charge-Trapping (CT) NAND Flash and Modeling of Incremental Step Pulse Programming (ISPP), Technical Digest of IEDM, pp. 839-842, 2009.
  9. J.-G. Yun, G. Kim, J.-E. Lee, Y. Kim, W. B. Shim, J.-H. Lee, H. Shin, J. D. Lee, B.-G. Park, "Single-Crystalline Si Stacked Array (STAR) NAND Flash Memory," IEEE Trans. Electron Devices, vol. 58, no. 4, pp. 1006-1013, 2011. https://doi.org/10.1109/TED.2011.2107557
  10. J. Kim, C. Kang, S.-I. Chang, J. Kim, Y. Jeong, C. Park, J.-H. Kang, S.-H. Kim, S. Hwang, B.-I. Choe, J. Park, J. Chung, Y. Park, J. Choi, C. Chung, "New phenomena for the Lifetime Prediction of TANOSbased Charge Trap NAND Flash Memory", Device Research Conference (DRC), pp. 99-100, 2010.
  11. S.-H Bae, J.-H Lee, H.-I kwon, J.-R Ahn, J.-C Om, C. H. Park, "The 1/f Noise and Random Telegraph Noise Characteristics in Floating-Gate NAND Flash Memories", IEEE Trans. Electron Devices, vol. 56, no. 8, pp. 1624-1630, 2009. https://doi.org/10.1109/TED.2009.2022700
  12. J. Fu, K. D. Buddharaju, S. H. G. Teo, C. Zhu, M. B. Yu, N. Singh, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, "Trap Layer Engineered Gate-All-Around Vertically Stacked Twin Si-Nanowire Nonvolatile Memory", Technical Digest of IEDM, pp. 79-82, 2007.
  13. D. K, J. Park, K. Kim, Y. Y, S. Ahn, Y. Park, J. Kim, W. Jeong, J. Kim, M. Park, B. Yoo, S. Song, H. Kim, J. Sim, S. Kwon, B. Hwang, H. Park, S. Kim, Y. Lee, H. Shin, N. Yim, K. Lee, M. Kim, Y. Lee, J. Park, S. Park, J. Jung, K. Kim, "Integration Technology of 30nm Generation Multi-Level NAND Flash for 64Gb NAND Flash Memory", Technical Digest of IEDM, pp. 12-13, 2007.
  14. Sentaurus Device Simulations, www.synopsys.com.
  15. A. Mauri, S. M. Amoroso, C. M. Compagnoni, A. Maconi, A. S. Spinelli, "Comprehensive numerical simulation of threshold-voltage transients in nitride memories", Solid-State Elect., vol. 56, pp. 23-30, 2011. https://doi.org/10.1016/j.sse.2010.11.004
  16. E. Gnani, S. Reggiani, A. Gnudi, G. Baccarani, J. Fu, N. Singh, G. Q. Lo, D. L. kwong, "Modeling of Nonvolatile Gate-All-Around Charge-Trapping SONOS Memory Cells", Solid-State Elect., vol. 54, pp. 997-1002, 2010. https://doi.org/10.1016/j.sse.2010.04.026
  17. E. Nowak, A. Hubert, L. Perniola, T. Ernst, G. Ghibaudo, G. Reimbold, B. De Salvo, F. Boulanger, "In-Depth Analysis of 3D Silicon Nanowire SONOS Memory Characteristics by TCAD Simulations," Proc. IMW Tech. Dig., pp. 116-119, 2010.
  18. S. H. Seo, G.-C. Kang, K. S. Roh, K. Y. Kim, S. Lee, K.-J. Song, C. M. Choi, S. R. Park, K. Jeon, J.-H. Park, B.-G. Park, J. D. Lee, D. M. Kim, and D. H. Kim, "Dynamic bias temperature instability-like behaviors under Fowler-Nordheim program/erase in nanoscale silicon-oxide-nitride-oxide-silicon memories", Appl. Phys. Lett., vol. 92, 133508, 2008. https://doi.org/10.1063/1.2905272
  19. S. Villa, G. De Geronimo, A. Pacelli, A. L. Lacaita, and A. Longoni, "Application of 1/f noise measurements to the characterization of nearinterface oxide traps in ULSI n-MOFETs", Microelectron. Reliab., vol. 38, pp. 1919-1923, 1998. https://doi.org/10.1016/S0026-2714(98)00069-9

피인용 문헌

  1. Silicon-compatible high-hole-mobility transistor with an undoped germanium channel for low-power application vol.103, pp.22, 2013, https://doi.org/10.1063/1.4833295
  2. Three-dimensional AND flash memory vol.53, pp.11, 2017, https://doi.org/10.1049/el.2017.0465