DOI QR코드

DOI QR Code

A Kinetic Study on Aminolysis of t-Butyl 4-Pyridyl Carbonate and Related Compounds: Effect of Leaving and Nonleaving Groups on Reaction Mechanism

  • Kang, Ji-Sun (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Lee, Jae-In (Department of Chemistry and Plant Resources Research Institute, Duksung Women's University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2012.04.13
  • Accepted : 2012.06.18
  • Published : 2012.09.20

Abstract

Second-order rate constants $k_N$ have been measured spectrophotometrically for nucleophilic substitution reactions of t-butyl 4-pyridyl carbonate 8 with a series of alicyclic secondary amines in $H_2O$ at $25.0{\pm}0.1^{\circ}C$. The Br${\emptyset}$nsted-type plot for the reactions of 8 is linear with ${\beta}_{nuc}$ = 0.84. The ${\beta}_{nuc}$ value obtained for the reactions of 8 is much larger than that reported for the corresponding reactions of t-butyl 2-pyridyl carbonate 6 (i.e., ${\beta}_{nuc}$ = 0.44), which was proposed to proceed through a forced concerted mechanism. Thus, the aminolysis of 8 has been concluded to proceed through a stepwise mechanism with a zwitterionic tetrahedral intermediate $T^{\pm}$, in which expulsion of the leaving-group from $T^{\pm}$ occurs at the rate-determining step (RDS). In contrast, aminolysis of benzyl 4-pyridyl carbonate 7 has been reported to proceed through two intermediates, $T^{\pm}$ and its deprotonated form $T^-$ on the basis of the fact that the plots of pseudo-first-order rate constant $k_{obsd}$ vs. amine concentration curve upward. The current study has demonstrated convincingly that the nature of the leaving and nonleaving groups governs the reaction mechanism. The contrasting reaction mechanisms have been rationalized in terms of an intramolecular H-bonding interaction, steric acceleration, and steric inhibition.

Keywords

References

  1. Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Singapore, 1997; Chapter 7.
  2. Carroll, F. A. Perspectives on Structure and Mechanism in Organic Chemistry; Brooks/ Cole: New York, 1988; Chapter 8.
  3. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper Collins Publishers: New York, 1987; Chapter 8.
  4. Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw Hill: New York, 1969.
  5. Jencks, W. P. Chem. Rev. 1985, 85, 511-527. https://doi.org/10.1021/cr00070a001
  6. Jencks, W. P. Acc. Chem. Res. 1980, 13, 161-169. https://doi.org/10.1021/ar50150a001
  7. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963-6970. https://doi.org/10.1021/ja00463a032
  8. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970-6980. https://doi.org/10.1021/ja00463a033
  9. Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1997, 179-183.
  10. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824- 3829. https://doi.org/10.1021/ja00766a027
  11. Castro, E. A. Pure Appl. Chem. 2009, 81, 685-696. https://doi.org/10.1351/PAC-CON-08-08-11
  12. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. https://doi.org/10.1021/cr990001d
  13. Williams, A. Acc. Chem. Res. 1989, 22, 387-392. https://doi.org/10.1021/ar00167a003
  14. Ba-Saif, S.; Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1987, 109, 6362-6368. https://doi.org/10.1021/ja00255a021
  15. Andres, G. O.; Granados, A. M.; Rossi, R. H. J. Org. Chem. 2001, 66, 7653-7657. https://doi.org/10.1021/jo010499v
  16. Stefanidis, D.; Cho, S.; Dhe-Paganon, S.; Jencks, W. P. J. Am. Chem. Soc. 1993, 115, 1650-1656. https://doi.org/10.1021/ja00058a006
  17. Pregel, M.; Dunn, E. J.; Buncel, E. J. Am. Chem. Soc. 1991, 113, 3545-3550. https://doi.org/10.1021/ja00009a049
  18. Buncel, E.; Um, I. H.; Hoz, S. J. Am. Chem. Soc. 1989, 111, 971-975. https://doi.org/10.1021/ja00185a029
  19. Um, I. H.; Kim, E. H.; Lee, J. Y. J. Org. Chem. 2009, 74, 1212- 1217. https://doi.org/10.1021/jo802446y
  20. Um, I. H.; Lee, J. Y.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2004, 69, 2436-2441. https://doi.org/10.1021/jo035854r
  21. Um, I. H.; Lee, J. Y.; Fujio, M.; Tsuno, Y. Org. Biomol. Chem. 2006, 4, 2979-2985. https://doi.org/10.1039/b607194e
  22. Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475-8480. https://doi.org/10.1021/jo026339g
  23. Castro, E. A.; Ugarte, D.; Rojas, M. F.; Pavez, P.; Santos, J. G. Int. J. Chem. Kinet. 2011, 43, 708-714. https://doi.org/10.1002/kin.20605
  24. Castro, E. A.; Millan, D.; Aguayo, R.; Compodonico, P. R.; Santos, J. G. Int. J. Chem. Kinet. 2011, 43, 687-693. https://doi.org/10.1002/kin.20598
  25. Castro, E. A.; Acevedo, R.; Santos, J. G. J. Phys. Org. Chem. 2011, 24, 603-610. https://doi.org/10.1002/poc.1814
  26. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Phys. Org. Chem. 2010, 23, 176-180.
  27. Castro, E. A.; Ramos, M.; Santos, J. G. J. Org. Chem. 2009, 74, 6374-6377. https://doi.org/10.1021/jo901137f
  28. Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 1539-1542. https://doi.org/10.5012/bkcs.2011.32.5.1539
  29. Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 2357-2360.
  30. Oh, H. K.; Lee, H. Bull. Korean Chem. Soc. 2010, 31, 475-478. https://doi.org/10.5012/bkcs.2010.31.02.475
  31. Koh, H. J.; Kang, S. J. Bull. Korean Chem. Soc. 2011, 32, 1897- 1901. https://doi.org/10.5012/bkcs.2011.32.6.1897
  32. Koh, H. J.; Kang, S. J. Bull. Korean Chem. Soc. 2011, 31, 1793-1796.
  33. Moon, D. H.; Seong, M. H.; Kyong, J. B.; Lee, Y.; Lee, Y. W. Bull. Korean Chem. Soc. 2011, 32, 2413-2417. https://doi.org/10.5012/bkcs.2011.32.7.2413
  34. Choi, S. H.; Seong, M. H.; Lee, Y. W.; Kyoun, J. B.; Kevill, D. N. Bull. Korean Chem. Soc. 2011, 32, 1268-1272. https://doi.org/10.5012/bkcs.2011.32.4.1268
  35. Su, Z.; Lee, H. W.; Kim, C. K. Org. Biomol. Chem. 2011, 9, 6402-6409. https://doi.org/10.1039/c1ob05642e
  36. Guha, A. K.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. 2011, 24, 474-479. https://doi.org/10.1002/poc.1788
  37. Barai, H. R.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 2339-2344. https://doi.org/10.5012/bkcs.2011.32.7.2339
  38. Dey, N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 709-712. https://doi.org/10.5012/bkcs.2011.32.2.709
  39. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
  40. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942. https://doi.org/10.1021/jo049694a
  41. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663. https://doi.org/10.1021/jo000482x
  42. Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243. https://doi.org/10.1002/chem.200500647
  43. Um, I. H.; Seok, J. A.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2003, 68, 7742-7746. https://doi.org/10.1021/jo034637n
  44. Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197. https://doi.org/10.1021/jo061682x
  45. Um, I. H.; Hwang, S. J.; Yoon, S.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677. https://doi.org/10.1021/jo801539w
  46. Um, I. H.; Lee, S. E.; Kwon, H. J. J. Org. Chem. 2002, 67, 8999-9005. https://doi.org/10.1021/jo0259360
  47. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078. https://doi.org/10.1021/jo900219t
  48. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829. https://doi.org/10.1021/jo070171n
  49. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720. https://doi.org/10.1021/jo061308x
  50. Kang, J. S.; Lee, J. I.; Um, I. H. Bull. Korean Chem. Soc. 2012, 33, 1551-1555. https://doi.org/10.5012/bkcs.2012.33.5.1551
  51. Lee, J. I. Bull. Korean Chem. Soc. 2010, 31, 749-752. https://doi.org/10.5012/bkcs.2010.31.03.749
  52. Lee, J. I. Bull. Korean Chem. Soc. 2007, 28, 863-866. https://doi.org/10.5012/bkcs.2007.28.5.863
  53. Kim, S.; Lee, J. I. J. Org. Chem. 1984, 49, 1712-1716. https://doi.org/10.1021/jo00184a009
  54. Kim, S.; Lee, J. I.; Ko, Y. K. Tetrahedron Lett. 1984, 25, 4943-4946. https://doi.org/10.1016/S0040-4039(01)91265-1
  55. Kim, S.; Lee, J. I. J. Org. Chem. 1983, 48, 2608-2610. https://doi.org/10.1021/jo00163a040
  56. Mukaiyama, T.; Araki, M.; Takei, H. J. Am. Chem. Soc. 1973, 95, 4763-4765. https://doi.org/10.1021/ja00795a055
  57. Araki, M.; Sakata, S.; Takei, H.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1974, 47, 1777-1780. https://doi.org/10.1246/bcsj.47.1777
  58. Um, I. H.; Kang, J. S.; Kim, C. W.; Lee, J. I. Bull. Korean Chem. Soc. 2012, 33, 519-523. https://doi.org/10.5012/bkcs.2012.33.2.519
  59. Kang, J. S.; Um, I. H. Bull. Korean Chem. Soc. 2012, 33, 2269- 2273. https://doi.org/10.5012/bkcs.2012.33.7.2269
  60. Bell, R. P. The Proton in Chemistry; Methuen: London, 1959; p 159.
  61. Castro, E. A.; Aliaga. M.; Campodonico, P. R.; Cepeda, M.; Contreras. R.; Santos, J. G. J. Org. Chem. 2009, 74, 9173-9179. https://doi.org/10.1021/jo902005y
  62. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092. https://doi.org/10.1021/jo051168b
  63. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 3530-3536. https://doi.org/10.1021/jo050119w
  64. Lowry T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper/Collins: New York, 1987; pp 153-157.
  65. Issacs, N. S. Physical Organic Chemistry, 2nd ed.; Longman Scientific and Technical: Singapore, 1995; pp 152-153.

Cited by

  1. Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Nonleaving Groups on Reactivity and Reaction Mechanism vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1115
  2. 2-D coordination polymers of copper and cobalt with 3,4-pyridinedicarboxylic acid: synthesis, characterization, and crystal structures vol.67, pp.18, 2012, https://doi.org/10.1080/00958972.2014.959002