• Title/Summary/Keyword: Steric acceleration

Search Result 4, Processing Time 0.018 seconds

A Kinetic Study on Aminolysis of t-Butyl 4-Pyridyl Carbonate and Related Compounds: Effect of Leaving and Nonleaving Groups on Reaction Mechanism

  • Kang, Ji-Sun;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2971-2975
    • /
    • 2012
  • Second-order rate constants $k_N$ have been measured spectrophotometrically for nucleophilic substitution reactions of t-butyl 4-pyridyl carbonate 8 with a series of alicyclic secondary amines in $H_2O$ at $25.0{\pm}0.1^{\circ}C$. The Br${\emptyset}$nsted-type plot for the reactions of 8 is linear with ${\beta}_{nuc}$ = 0.84. The ${\beta}_{nuc}$ value obtained for the reactions of 8 is much larger than that reported for the corresponding reactions of t-butyl 2-pyridyl carbonate 6 (i.e., ${\beta}_{nuc}$ = 0.44), which was proposed to proceed through a forced concerted mechanism. Thus, the aminolysis of 8 has been concluded to proceed through a stepwise mechanism with a zwitterionic tetrahedral intermediate $T^{\pm}$, in which expulsion of the leaving-group from $T^{\pm}$ occurs at the rate-determining step (RDS). In contrast, aminolysis of benzyl 4-pyridyl carbonate 7 has been reported to proceed through two intermediates, $T^{\pm}$ and its deprotonated form $T^-$ on the basis of the fact that the plots of pseudo-first-order rate constant $k_{obsd}$ vs. amine concentration curve upward. The current study has demonstrated convincingly that the nature of the leaving and nonleaving groups governs the reaction mechanism. The contrasting reaction mechanisms have been rationalized in terms of an intramolecular H-bonding interaction, steric acceleration, and steric inhibition.

EFFECTS OF AMINES ON COPPER ETCHING WITH H$_2$SO$_4$-$H_2O$$_2$ SYSTEMS

  • Kobayashi, Katsuyoshi;Minami, Naoki;Chiba, Atsushi
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.377-384
    • /
    • 1999
  • The corrosion of copper in $H_2$$SO_4$ $-H_2$$O_2$ etching solutions with amines was investigated at various flow rates (v). Amine additives give a retardation of $H_2$$O_2$ decompositions, increases in both corrosion rates and etch factor, and a protection of etched copper surfaces. However n-alkylamine additives acted as corrosion inhibitors at v < 10cm/s, those acted as corrosion accelerators at v of 10-220cm/s. The maximum corrosion rate was obtained with about 0.1 molal concentration of additives. Steric effects of substituted groups suppressed the acceleration of copper corrosion. The increases in both corrosion rates and flow rates gave the increase in etch factor. Corrosion rates with n-alkylamine increased in the order of ethylamine < n-propylamine < n-butylamine, those with butylamine isomers tert- < sec- < iso- < n-butylamine, and those with amine additives of different number of substituted groups tri- < di- < mono-n-propylamine, respectively.

  • PDF

Alkylhydridorhodium(Ⅲ) Route for Isomerization and Hydrogenation of Unsaturated Alcohols with Rh(ClO$_4)(CO)(PPh_3)_2$ and [Rh(CO)(PPh$_3)_3]ClO_4$ under Hydrogen

  • Chin, Chong-Shik;Park, Jeong-Han;Kim, Choon-Gil
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.4
    • /
    • pp.360-362
    • /
    • 1989
  • Catalytic isomerization of unsaturated alcohols to the corresponding carbonyl compounds with$Rh(ClO_4)(CO)(PPh_3)_2\;(1)\;and\;[Rh(CO)(PPh_3)_3]ClO_4$ (2) is faster under hydrogen (where hydrogenation also occurs to give saturated alcohols) than under nitrogen. The isomerization under hydrogen seems to occur through an alkylhydridorhodium(III) complex which also undergoes reductive elimination to give hydrogenation products, saturated alcohols. The isomerization under hydrogen is faster with 2 than with 1, which is understood by acceleration of the last step, enol formation by $PPh_3$ dissociated from 2 and present in the reaction mixture when 2 is used as catalyst. Relative rates of the isomerization observed for different unsaturated alcohols are interpreted by steric effects of substituted groups and numbers of hydrogens to be abstracted by the rhodium of the intermediate, alkylhydridorhodium(III) to undergo the reductive elimination to give enol which is then rapidly converted into a carbonyl compound. It has been observed that the hydrogenation is relatively significant when reactions occur slowly whereas the isomerization is predominant when reactions proceed rapidly.

VULNERABILITY OF KOREAN COAST TO THE SEA-LEVEL RISE DUE TO $21^{ST}$ GLOBAL WARMING

  • Cho Kwangwoo;Maeng Jun Ho;Yun Jong-Hwui
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.219-225
    • /
    • 2003
  • The present study intends to assess the long-term steric sea-level change and its prediction, and potential impacts to the sea-level rise due to the 21st global warming in the coastal zone of the Korea in which much socioeconomic activities have been occurred. The analysis of the 23 tide-gauge data near Korea reveals the overall mean sea-level trend of 2.31 mm/yr.In the satellite altimeter data (Topex/Poseidon and ERS), the sea-level trend in the East Sea is 4.6mm/yr. Both are larger than those of the global average value. However, it is quite questionable that the sea-level trends with the tide-gauge data on the neighboring seas of Korea relate to global warming because of the relatively short observation period and large spatial variability. It is also not clear whether the high trend of altimeter data in the East Sea is related to the acceleration of sea level rise in the Sea, short response time of the Sea, natural variability such as decadal variability, short duration of the altimeter. The coastal zone of Korea appears to be quite vulnerable to the 21st sea level rise such that for the I-m sea level rise with high tide and storm surge, the inundation area is 2,643 km2, which is about $1.2\%$ of total area and the population in the risk areas of inundation is 1.255 million, about $2.6\%$ of total population. The coastal zone west of Korea is appeared to be the most vulnerable area compared to the east and south. In the west of the Korea, the North Korea appears to be more vulnerable than South Korea. In order to cope with the future possible impact of sea-level rise to the coastal zone of Korea effectively, it is essential to improve scientific information in the sea-level rise trend, regional prediction, and vulnerability assessment near Korean coast.

  • PDF