References
- Lu, A. H.; Li, W. C.; Schmidt, W.; Schuth, F. J. Mater. Chem. 2006, 16, 3396. https://doi.org/10.1039/b607542h
- Vinu, A.; Miyahara, M.; Sivamurugan, V.; Mori, T.; Ariga, K. J. Mater. Chem. 2005, 15, 5122. https://doi.org/10.1039/b507456h
- Lu, A. H.; Schmidt, W.; Matoussevitch, N.; Spliethoff, B.; Tesche, B.; Bill, E.; Kiefer, W.; Schuth, F. Angew. Chem. Int. Ed. 2004, 43, 4303. https://doi.org/10.1002/anie.200454222
- Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nature 2001, 412, 169. https://doi.org/10.1038/35084046
- Su, F. B.; Zeng, J. H.; Bao, X. Y.; Yu, Y. S.; Lee, J. Y.; Zhao, X. S. Chem. Mater. 2005, 17, 3960. https://doi.org/10.1021/cm0502222
- Cui, X. Z.; Shi, J. L.; Zhang, L. X.; Ruan, M. L.; Gao, J. H. Carbon 2009, 47, 186. https://doi.org/10.1016/j.carbon.2008.09.054
- Cui, X. Z.; Cui, F. M.; He, Q. J.; Guo, L. M.; Ruan, M. L.; Shi, J. L. Fuel 2010, 89, 372. https://doi.org/10.1016/j.fuel.2009.09.006
- Zhang, J.; Liu, X.; Blume, R.; Zhang, A. H.; Schlögl, R.; Su, D. S. Science 2008, 322, 73. https://doi.org/10.1126/science.1161916
- Liu, G.; Liu, Y.; Zhang, X. Y.; Yuan, X. L.; Zhang, M.; Zhang, W. X.; Jia, M. J. J. Colloid Interface Sci. 2010, 342, 467. https://doi.org/10.1016/j.jcis.2009.10.036
- Zhou, J. H.; He, J. P.; Wang, T.; Chen, X.; Sun, D. Electrochim. Acta 2009, 54, 3103. https://doi.org/10.1016/j.electacta.2008.12.002
- Pietra, S.; Res, M. Ann. Chim. 1958, 48, 299.
- Entwistle, I. D.; Jackson, A. E.; Johnstone, R. A. W.; Telford, R. P. J. Chem. Soc. 1977, 1, 443.
- Furst, A.; Berlo, R. C.; Hootom, S. Chem. Rev. 1965, 65, 51. https://doi.org/10.1021/cr60233a002
- Lee, H. R.; Ryoo, E. S.; Shin, D. H. Taehan Hwhakhoe Chi. 1988, 32, 607.
- Han, B. H.; Shin, D. H. Bull. Korean Chem. Soc. 1985, 6, 320.
- Kumarraja, M.; Pitchumani, K. Appl. Catal. A: Gen. 2004, 265, 135. https://doi.org/10.1016/j.apcata.2004.01.009
- Li, B. J.; Xu, Z. J. Am. Chem. Soc. 2009, 131, 16380. https://doi.org/10.1021/ja9061097
- Niemeyer, J.; Erker, G. ChemCatChem 2010, 2, 499. https://doi.org/10.1002/cctc.201000038
- Wang, H. C.; Li, B. L.; Li, J. T.; Lin, P.; Bian, X. B.; Li, J.; Zhang, B.; Wan, Z. X. Appl. Surf. Sci. 2011, 257, 4325. https://doi.org/10.1016/j.apsusc.2010.12.051
- Wang, H. C.; Li, J. T.; Lin, P.; Li, X. B.; Bian, X. B.; Wang, X. M.; Li, B. L. Micropor. Mesopor. Mater. 2010, 134, 175. https://doi.org/10.1016/j.micromeso.2010.05.023
- Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603. https://doi.org/10.1351/pac198557040603
- Hirashima, O.; Manabe, T. Chem. Lett. 1975, 3, 259.
- Clive, D. L. J.; Angoh, A. G.; Sharon, B. M. J. Org. Chem. 1987, 52, 1339. https://doi.org/10.1021/jo00383a032
- Hine, J.; Hahn, S.; Miles, D. E.; Ahn, K. J. Org. Chem. 1985, 50, 5092. https://doi.org/10.1021/jo00225a020
- Park, M. K.; Jang, D. G.; Han, B. H. Bull. Korean Chem. Soc. 1991, 12, 709.
- Corey, E. J.; Mock, W. L.; Pasto, D. J. Tetrahedron Lett. 1961, 11, 347.
- Corey, E. J.; Mock, W. L.; Pasto, D. J. J. Am. Chem. Soc. 1961, 83, 2957. https://doi.org/10.1021/ja01474a043
- Larsen, J. W.; Freund1, M.; Kim, K. Y.; Sidovar, M.; Stuart, J. L. Carbon 2000, 38, 655. https://doi.org/10.1016/S0008-6223(99)00155-4
- Pigamo, A.; Besson, M.; Blanc, B.; Gallezot, P.; Blackburn, A.; Kozynchenko, O.; Tennison, S.; Crezee, E.; Kapteijn, F. Carbon 2002, 40, 1267. https://doi.org/10.1016/S0008-6223(01)00284-6
Cited by
- Chemoselective Reductions of Nitroaromatics in Water at Room Temperature vol.16, pp.1, 2014, https://doi.org/10.1021/ol403079x
- Metal-Free Transfer Hydrogenation of Nitroarenes in Water with Vasicine: Revelation of Organocatalytic Facet of an Abundant Alkaloid vol.79, pp.19, 2014, https://doi.org/10.1021/jo5019415
- Catalyst-Free Chemoselective Reduction of Nitroarenes Using Thiourea as a Hydrogen Source vol.4, pp.2, 2015, https://doi.org/10.1002/ajoc.201402249
- Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds vol.9, pp.13, 2016, https://doi.org/10.1002/cssc.201600197
- Recent developments in the reduction of aromatic and aliphatic nitro compounds to amines. pp.1520-586X, 2016, https://doi.org/10.1021/acs.oprd.6b00205
- )-one as an organocatalyst for the chemoselective reduction of nitroarenes vol.42, pp.2, 2018, https://doi.org/10.1039/C7NJ03333H
- Highly efficient nitrobenzene and alkyl/aryl azide reduction in stainless steel jars without catalyst addition pp.1369-9261, 2018, https://doi.org/10.1039/C8NJ04240C
- A Facile and Efficient Method for Continuous Reduction of Nitroaromatic Compounds Through the Cyclic Transformation Between Fe(II)‐complexes and Nano Zero–valent Iron vol.1, pp.11, 2012, https://doi.org/10.1002/slct.201600407
- An Efficient Method for Reduction of Nitroaromatic Compounds to the Corresponding Aromatic Amines with NH2NH2·H2O Catalysed by H2O2-Treate vol.41, pp.9, 2012, https://doi.org/10.3184/174751917x15005518143041