DOI QR코드

DOI QR Code

Mesoporous Carbon as a Metal-Free Catalyst for the Reduction of Nitroaromatics with Hydrazine Hydrate

  • Wang, Hui-Chun (College of Life and Geography, Qinghai Normal University) ;
  • Li, Bao-Lin (Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, and School of Chemistry and Materials Science, Shaanxi Normal University) ;
  • Zheng, Yan-Jun (Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, and School of Chemistry and Materials Science, Shaanxi Normal University) ;
  • Wang, Wen-Ying (College of Life and Geography, Qinghai Normal University)
  • Received : 2011.08.19
  • Accepted : 2012.06.08
  • Published : 2012.09.20

Abstract

Mesoporous carbons with tailored pore size were prepared by using sucrose as the carbon source and silicas as the templates. The silica templates were obtained from a hydroxypropyl-${\beta}$-cyclodextrin-silica hybrids using ammonium perchlorate oxidation at different temperatures to remove the organic matter. The structures and surface chemistry properties of these carbon materials were characterized by $N_2$ adsorption, TEM, SEM and FTIR measurements. The catalytic performances of these carbon materials were investigated through the reduction of nitroaromatic using hydrazine hydrate as the reducing agent. Compared with other carbon materials, such as active carbon, and carbon materials from the silica templates obtained by using calcination to remove the organic matter, these carbon materials exhibited much higher catalytic activity, no obvious deactivation was observed after recycling the catalyst four times. Higher surface area and pore volume, and the presence of abundant surface oxygen-containing functional groups, which originate from the special preparation process of carbon material, are likely responsible for the high catalytic property of these mesoporous carbon materials.

Keywords

References

  1. Lu, A. H.; Li, W. C.; Schmidt, W.; Schuth, F. J. Mater. Chem. 2006, 16, 3396. https://doi.org/10.1039/b607542h
  2. Vinu, A.; Miyahara, M.; Sivamurugan, V.; Mori, T.; Ariga, K. J. Mater. Chem. 2005, 15, 5122. https://doi.org/10.1039/b507456h
  3. Lu, A. H.; Schmidt, W.; Matoussevitch, N.; Spliethoff, B.; Tesche, B.; Bill, E.; Kiefer, W.; Schuth, F. Angew. Chem. Int. Ed. 2004, 43, 4303. https://doi.org/10.1002/anie.200454222
  4. Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nature 2001, 412, 169. https://doi.org/10.1038/35084046
  5. Su, F. B.; Zeng, J. H.; Bao, X. Y.; Yu, Y. S.; Lee, J. Y.; Zhao, X. S. Chem. Mater. 2005, 17, 3960. https://doi.org/10.1021/cm0502222
  6. Cui, X. Z.; Shi, J. L.; Zhang, L. X.; Ruan, M. L.; Gao, J. H. Carbon 2009, 47, 186. https://doi.org/10.1016/j.carbon.2008.09.054
  7. Cui, X. Z.; Cui, F. M.; He, Q. J.; Guo, L. M.; Ruan, M. L.; Shi, J. L. Fuel 2010, 89, 372. https://doi.org/10.1016/j.fuel.2009.09.006
  8. Zhang, J.; Liu, X.; Blume, R.; Zhang, A. H.; Schlögl, R.; Su, D. S. Science 2008, 322, 73. https://doi.org/10.1126/science.1161916
  9. Liu, G.; Liu, Y.; Zhang, X. Y.; Yuan, X. L.; Zhang, M.; Zhang, W. X.; Jia, M. J. J. Colloid Interface Sci. 2010, 342, 467. https://doi.org/10.1016/j.jcis.2009.10.036
  10. Zhou, J. H.; He, J. P.; Wang, T.; Chen, X.; Sun, D. Electrochim. Acta 2009, 54, 3103. https://doi.org/10.1016/j.electacta.2008.12.002
  11. Pietra, S.; Res, M. Ann. Chim. 1958, 48, 299.
  12. Entwistle, I. D.; Jackson, A. E.; Johnstone, R. A. W.; Telford, R. P. J. Chem. Soc. 1977, 1, 443.
  13. Furst, A.; Berlo, R. C.; Hootom, S. Chem. Rev. 1965, 65, 51. https://doi.org/10.1021/cr60233a002
  14. Lee, H. R.; Ryoo, E. S.; Shin, D. H. Taehan Hwhakhoe Chi. 1988, 32, 607.
  15. Han, B. H.; Shin, D. H. Bull. Korean Chem. Soc. 1985, 6, 320.
  16. Kumarraja, M.; Pitchumani, K. Appl. Catal. A: Gen. 2004, 265, 135. https://doi.org/10.1016/j.apcata.2004.01.009
  17. Li, B. J.; Xu, Z. J. Am. Chem. Soc. 2009, 131, 16380. https://doi.org/10.1021/ja9061097
  18. Niemeyer, J.; Erker, G. ChemCatChem 2010, 2, 499. https://doi.org/10.1002/cctc.201000038
  19. Wang, H. C.; Li, B. L.; Li, J. T.; Lin, P.; Bian, X. B.; Li, J.; Zhang, B.; Wan, Z. X. Appl. Surf. Sci. 2011, 257, 4325. https://doi.org/10.1016/j.apsusc.2010.12.051
  20. Wang, H. C.; Li, J. T.; Lin, P.; Li, X. B.; Bian, X. B.; Wang, X. M.; Li, B. L. Micropor. Mesopor. Mater. 2010, 134, 175. https://doi.org/10.1016/j.micromeso.2010.05.023
  21. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603. https://doi.org/10.1351/pac198557040603
  22. Hirashima, O.; Manabe, T. Chem. Lett. 1975, 3, 259.
  23. Clive, D. L. J.; Angoh, A. G.; Sharon, B. M. J. Org. Chem. 1987, 52, 1339. https://doi.org/10.1021/jo00383a032
  24. Hine, J.; Hahn, S.; Miles, D. E.; Ahn, K. J. Org. Chem. 1985, 50, 5092. https://doi.org/10.1021/jo00225a020
  25. Park, M. K.; Jang, D. G.; Han, B. H. Bull. Korean Chem. Soc. 1991, 12, 709.
  26. Corey, E. J.; Mock, W. L.; Pasto, D. J. Tetrahedron Lett. 1961, 11, 347.
  27. Corey, E. J.; Mock, W. L.; Pasto, D. J. J. Am. Chem. Soc. 1961, 83, 2957. https://doi.org/10.1021/ja01474a043
  28. Larsen, J. W.; Freund1, M.; Kim, K. Y.; Sidovar, M.; Stuart, J. L. Carbon 2000, 38, 655. https://doi.org/10.1016/S0008-6223(99)00155-4
  29. Pigamo, A.; Besson, M.; Blanc, B.; Gallezot, P.; Blackburn, A.; Kozynchenko, O.; Tennison, S.; Crezee, E.; Kapteijn, F. Carbon 2002, 40, 1267. https://doi.org/10.1016/S0008-6223(01)00284-6

Cited by

  1. Chemoselective Reductions of Nitroaromatics in Water at Room Temperature vol.16, pp.1, 2014, https://doi.org/10.1021/ol403079x
  2. Metal-Free Transfer Hydrogenation of Nitroarenes in Water with Vasicine: Revelation of Organocatalytic Facet of an Abundant Alkaloid vol.79, pp.19, 2014, https://doi.org/10.1021/jo5019415
  3. Catalyst-Free Chemoselective Reduction of Nitroarenes Using Thiourea as a Hydrogen Source vol.4, pp.2, 2015, https://doi.org/10.1002/ajoc.201402249
  4. Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds vol.9, pp.13, 2016, https://doi.org/10.1002/cssc.201600197
  5. Recent developments in the reduction of aromatic and aliphatic nitro compounds to amines. pp.1520-586X, 2016, https://doi.org/10.1021/acs.oprd.6b00205
  6. )-one as an organocatalyst for the chemoselective reduction of nitroarenes vol.42, pp.2, 2018, https://doi.org/10.1039/C7NJ03333H
  7. Highly efficient nitrobenzene and alkyl/aryl azide reduction in stainless steel jars without catalyst addition pp.1369-9261, 2018, https://doi.org/10.1039/C8NJ04240C
  8. A Facile and Efficient Method for Continuous Reduction of Nitroaromatic Compounds Through the Cyclic Transformation Between Fe(II)‐complexes and Nano Zero–valent Iron vol.1, pp.11, 2012, https://doi.org/10.1002/slct.201600407
  9. An Efficient Method for Reduction of Nitroaromatic Compounds to the Corresponding Aromatic Amines with NH2NH2·H2O Catalysed by H2O2-Treate vol.41, pp.9, 2012, https://doi.org/10.3184/174751917x15005518143041