DOI QR코드

DOI QR Code

Matrix-Assisted Variable Wavelength Laser Desorption Ionization of Peptides; Influence of the Matrix Absorption Coefficient on Expansion Cooling

  • Ahn, Sung-Hee (Department of Chemistry, Seoul National University) ;
  • Bae, Yong-Jin (Department of Chemistry, Seoul National University) ;
  • Kim, Myung-Soo (Department of Chemistry, Seoul National University)
  • Received : 2012.05.01
  • Accepted : 2012.06.11
  • Published : 2012.09.20

Abstract

Product ion yields in the in- and post-source decays of three peptide ions, $[Y_5X+H]^+$ (X = Y (tyrosine), K (lysine), and R (arginine)), generated by matrix-assisted laser desorption ionization (MALDI) were measured at six wavelengths, 307, 317, 327, 337, 347, and 357 nm, using ${\alpha}$-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB) as the matrices. The temperatures of the early and late plumes generated by MALDI were estimated via kinetic analysis of the product ion yield data. For both matrices, the temperature drop (${\Delta}T$), i.e. the difference in the temperature between the early and late plumes, displayed negative correlation with the absorption coefficient. This was in agreement with the previous reasoning that deeper laser penetration and larger amount of material ablation arising from smaller absorption coefficient would result in larger extent of expansion cooling. The results support the postulation of the expansion cooling occurring in the plume presented previously.

Keywords

References

  1. Hillenkamp, F.; Peter-Katalini , J. MALDI MS A Practical Guide to Instrumentation, Methods and Applications; Wiley-VCH: Weinheim, Germany, 2007.
  2. Zenobi, R.; Knochenmuss, R. Mass Spectrom. Rev. 1998, 17, 337- 366. https://doi.org/10.1002/(SICI)1098-2787(1998)17:5<337::AID-MAS2>3.0.CO;2-S
  3. Dreisewerd, K. Chem. Rev. 2003, 103, 395-425. https://doi.org/10.1021/cr010375i
  4. Knochenmuss, R. Analyst. 2006, 131, 966-986. https://doi.org/10.1039/b605646f
  5. Dreisewerd, K.; Berkenkamp, S.; Leisner, A.; Rohlfing, A.; Menzel, C. Int. J. Mass Spectrom. 2003, 226, 189-209. https://doi.org/10.1016/S1387-3806(02)00977-6
  6. Zhang, W.; Krutchinsky, A. N.; Chait B. T. J. Am. Soc. Mass Spectrom. 2003, 14, 1012-1021. https://doi.org/10.1016/S1044-0305(03)00346-5
  7. Semmler, A.; Weber, R.; Przybylski, M.; Wittmann, V. J. Am. Soc. Mass Spectrom. 2010, 21, 215-219. https://doi.org/10.1016/j.jasms.2009.10.004
  8. Strupat, K.; Kovtoun, V.; Bui, H.; Viner, R.; Stafford, G.; Horning, S. J. Am. Soc. Mass Spectrom. 2009, 20, 1451-1463. https://doi.org/10.1016/j.jasms.2009.04.013
  9. Hernandez, P.; Muller, M.; Appel, R. D. Mass Spectrom. Rev. 2006, 25, 235-254. https://doi.org/10.1002/mas.20068
  10. Kinter, M.; Sherman, N. E. Protein Sequencing and Identification Using Tandem Mass Spectrometry; John Wiley: New York, U.S.A., 2000.
  11. Brown, R. S.; Carr, B. L.; Lennon, J. J. J. Am. Soc. Mass Spectrom. 1996, 7, 225-232. https://doi.org/10.1016/1044-0305(95)00676-1
  12. Kocher, T.; Engström, Å.; Zubarev, R. A. Anal. Chem. 2005, 77, 172-177. https://doi.org/10.1021/ac0489115
  13. Spengler, B. J. Mass Spectrom. 1997, 32, 1019-1036. https://doi.org/10.1002/(SICI)1096-9888(199711)32:10<1019::AID-JMS595>3.0.CO;2-G
  14. Roepstorff, P.; Fohlman, J. J. Biomed. Mass Spectrom. 1984, 11, 601. https://doi.org/10.1002/bms.1200111109
  15. Biemann, K. Sequencing of Peptides by Tandem Mass Spectrometry and High-Energy Colision-Induced Dissociation. Methods in Enzymology; Academic Press: New York, U.S.A., 1990.
  16. Paizs, B.; Suhai, S. Mass Spectrom. Rev. 2005, 24, 508-548. https://doi.org/10.1002/mas.20024
  17. Demeure, K.; Gabelica, V.; De Pauw, E. A. J. Am. Soc. Mass Spectrom. 2010, 21, 1906-1917.
  18. Takayama, M. J. Am. Soc. Mass Spectrom. 2001, 12, 1044-1049. https://doi.org/10.1016/S1044-0305(01)00289-6
  19. Yoon, S. H.; Moon, J. H.; Kim, M. S. J. Am. Soc. Mass Spectrom. 2010, 21, 1876-1883.
  20. Sachon, E.; Clodic, G.; Blasco, T.; Jacquot, Y.; Bolbach, G. Anal. Chem. 2009, 81, 8986-8992. https://doi.org/10.1021/ac901449d
  21. Bae, Y. J.; Moon, J. H.; Kim, M. S. J. Am. Soc. Mass Spectrom. 2011, 22, 1070-1078. https://doi.org/10.1007/s13361-011-0115-y
  22. Vertes, A.; Irinyi, G.; Gijbels, R. Anal. Chem. 1993, 65, 2389- 2393. https://doi.org/10.1021/ac00065a036
  23. Berkenkamp, S.; Menzel, C.; Hillenkamp, F.; Dreisewerd, K. J. Am. Soc. Mass Spectrom. 2002, 13, 209. https://doi.org/10.1016/S1044-0305(01)00355-5
  24. Gluckmann, M.; Karas, M. J. Mass Spectrom. 1999, 34, 467-477. https://doi.org/10.1002/(SICI)1096-9888(199905)34:5<467::AID-JMS809>3.0.CO;2-8
  25. Strupat, K.; Kampmeier, J.; Horneffer, V. Int. J. Mass Spectrom. Ion Proc. 1997, 43, 169-170.
  26. Moon, J. H.; Yoon, S. H.; Kim, M. S. Bull. Korean Chem. Soc. 2005, 26, 763-768. https://doi.org/10.5012/bkcs.2005.26.5.763
  27. Yoon, S. H.; Moon, J. H.; Choi, K. M.; Kim, M. S. Rapid Commun. Mass Spectrom. 2006, 20, 2201-2208. https://doi.org/10.1002/rcm.2584
  28. Bae, Y. J.; Yoon, S. H.; Moon, J. H.; Kim, M. S. Bull. Korean Chem. Soc. 2010, 31, 92-99. https://doi.org/10.5012/bkcs.2010.31.01.092
  29. Oh, J. Y.; Moon, J. H.; Kim, M. S. J. Am. Soc. Mass Spectrom. 2004, 15, 1248-1259. https://doi.org/10.1016/j.jasms.2004.05.003
  30. Allwood, D. A.; Dreyfus, R. W.; Perera, I. K.; Dyer, P. E. Rapid Commun. Mass Spectrom. 1996, 10, 1575-1578. https://doi.org/10.1002/(SICI)1097-0231(199610)10:13<1575::AID-RCM658>3.0.CO;2-C
  31. Yoon, S. H.; Moon, J. H.; Kim, M. S. J. Am. Soc. Mass Spectrom. 2011, 22, 214-220. https://doi.org/10.1007/s13361-010-0043-2
  32. Asakawa, D.; Takayama, M. Rapid Commun. Mass Spectrom. 2011, 25, 2379-2383. https://doi.org/10.1002/rcm.5130
  33. Yoon, S. H.; Moon, J. H.; Kim, M. S. J. Am. Soc. Mass Spectrom. 2009, 20, 1522-1529. https://doi.org/10.1016/j.jasms.2009.04.008
  34. Elam, J. W.; Levy, D. H. J. Chem. Phys. 1997, 106, 10368-10378. https://doi.org/10.1063/1.474071
  35. Morozov, A. A. Phys. Fluids 2008, 20, 027103. https://doi.org/10.1063/1.2841624

Cited by

  1. Recent methodological advances in MALDI mass spectrometry vol.406, pp.9-10, 2014, https://doi.org/10.1007/s00216-014-7646-6
  2. A Thermal Mechanism of Ion Formation in MALDI vol.8, pp.1, 2015, https://doi.org/10.1146/annurev-anchem-081413-024102