DOI QR코드

DOI QR Code

Study of Nano-emulsion Formation by Different Dilution Method

희석 방법에 따른 나노에멀젼 형성 연구

  • Cho, Wan-Goo (College of Alternative Medicine, Jeonju University) ;
  • Han, Sang-Gil (Industry Academy Cooperation Foundation, Soonchunhyang University)
  • 조완구 (전주대학교 대체의학대학 기초의과학과) ;
  • 한상길 (순천향대학교 산학협력단)
  • Received : 2012.05.16
  • Accepted : 2012.08.20
  • Published : 2012.09.30

Abstract

The influence of different dilution procedures on the properties of oil-in-water (O/W) nano-emulsions obtained by dilution of oil-in-ethanol (O/E) microemulsions with water has been studied. The system water/ethanol/nonionic surfactant/silicone oil with ethanol was chosen as model system. The dilution procedures consisted of adding water (or microemulsion) stepwise. By mixing O/E microemulsions into water, nano-emulsions with droplet diameters of 30 nm were obtained. In contrast, by mixing water into O/E microemulsion, emulsions with diameter of 400 nm were obtained The dilution methods were shown to be a key factor determining the properties of the emulsions. There were no change in diameters of nanoemulsion droplets against time, however sizes of droplets in the emulsion with larger droplets were increased with time and the mechanism of unstability was thought to be Ostwald ripening.

Oil-in-ethanol (O/E) 마이크로에멀젼을 물에 희석하여 얻은 O/W 나노에멀젼의 성질에 대하여 다른 희석 과정의 영향을 연구하였다. 물/에탄올/비이온성계면활성제/실리콘 오일 계를 모델 계로 선택하였다. 희석과정은 물(또는 마이크로에멀젼)을 마이크로에멀젼(또는 물)에 단계별로 첨가하는 방법으로 구성되었다. O/E 마이크로에멀젼을 물에 첨가하여 혼합하면 30 nm 정도의 입경을 가진 나노에멀젼을 얻을 수 있었다. 반면에 물을 O/E 마이크로에멀젼에 첨가하면 400 nm의 입경을 가진 에멀젼을 얻을 수 있다. 희석 방법이 얻어지는 에멀젼의 성질에 중요한 역할을 하였다. 시간에 따른 나노에멀젼의 입자 변화는 관찰되지 않았으나 입자가 큰 에멀젼은 시간에 따라 입경이 증가하였으며 불안정화 기작은 오스트왈드 라이퍼닝으로 추정되었다.

Keywords

References

  1. C. Solans, I. Sole, A. Fernandez-Arteaga, J. Nolla, N. Azemar, J. M. Gutierrez, A. Maestro, C. Gonzalez, and C. M. Pey, Surfactant Science Series 146, ed. H. A. Roque, 457, CRC Press, New York (2010).
  2. Solans, P. Izquierdo, J. Nolla, N. Azemar, and M. J. Garcia-Celma, Nano-emulsions, Curr. Opin. Colloid Inter. Sci., 10, 102 (2005). https://doi.org/10.1016/j.cocis.2005.06.004
  3. J. M. Gutierrez, C. Gonzalez, A. Maestro, I. Sole, C. M. Pey, and J. Nolla, Nano-emulsions: New applications and optimization of their preparation, Curr. Opin. Colloid Inter. Sci., 13, 245 (2008). https://doi.org/10.1016/j.cocis.2008.01.005
  4. J. M. Asua, Miniemulsion polymerization, Prog. Polym. Sci., 27, 1283 (2002). https://doi.org/10.1016/S0079-6700(02)00010-2
  5. M. Antonietti and K. Landfester, Polyreactions in miniemulsions, Prog. Polym. Sci., 27, 689 (2002). https://doi.org/10.1016/S0079-6700(01)00051-X
  6. G. Caldero, M. J. Garcia-Celma, and C. Solans, Formation of polymeric nano-emulsions by a lowenergy method and their use for nanoparticle preparation, J. Colloid Inter. Sci., 353, 406 (2011). https://doi.org/10.1016/j.jcis.2010.09.073
  7. L. Wang, J. Dong, J. Chen, J. Eastoe, and X. Li, Design and optimization of a new self-nanoemulsifying drug delivery system, J. Colloid Inter. Sci., 330, 443 (2009). https://doi.org/10.1016/j.jcis.2008.10.077
  8. N. Sadurni, C. Solans, N. Azemar, and M. J. Garcia-Celma, Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications, Eur. J. Pharm. Sci., 26, 438 (2005). https://doi.org/10.1016/j.ejps.2005.08.001
  9. L. Wang, X. Li, G. Zhang, J. Dong, and J. Eastoe, Oil-in-water nanoemulsions for pesticide formulations, J. Colloid Inter. Sci., 314, 230 (2007). https://doi.org/10.1016/j.jcis.2007.04.079
  10. O. Sonneville-Aubrun, J. T. Simonnet, and F. L'Alloret, Nanoemulsions: a new vehicle for skincare products, Adv. Colloid Inter. Sci., 108-9, 145 (2004). https://doi.org/10.1016/j.cis.2003.10.026
  11. J. Floury, A. Desrumaux, M. A. V. Axelos, and J. Legrand, Effect of high pressure homogenisation on methylcellulose as food emulsifier, J. Food Eng., 58, 227 (2003). https://doi.org/10.1016/S0260-8774(02)00372-2
  12. K. Landfester, J. Eisenblatter, and R. Rothe, Preparation of polymerizable miniemulsions by ultrasonication, J. Coat. Technol. Res., 1, 65 (2004). https://doi.org/10.1007/s11998-004-0026-y
  13. T. Delmas, H. Piraux, A. C. Couffin, I. Texier, F. Vinet, P. Poulin, M. E. Cates, and J. Bibette, How to prepare and stabilize very small nanoemulsions, Langmuir, 27, 1683 (2011). https://doi.org/10.1021/la104221q
  14. Th. F. Tadros, P. Izquierdo, J. Esquena, and C. Solans, Formation and stability of nano-emulsions, Adv. Colloid Inter. Sci., 108-09, 303 (2004). https://doi.org/10.1016/j.cis.2003.10.023
  15. K. Shinoda and H. Kunieda, Encyclopedia of Emulsion Technology 1, ed. P. Becher, 337, Marcel Dekker, New York, (1983).
  16. S. A. Vitale and J. L. Katz, Liquid droplet dispersions formed by homogeneous liquid-liquid nucleation: The Ouzo effect, Langmuir, 19, 4105 (2003). https://doi.org/10.1021/la026842o
  17. S. Sajjadi, Formation of fine emulsions by emulsification at high viscosity or low interfacial tension; A comparative study, Langmuir, 22, 5597 (2006). https://doi.org/10.1021/la060043e
  18. K. Bouchemal, S. Briancon, E. Perrier, and H. Fessi, Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation, Int. J. Pharm., 280, 241 (2004). https://doi.org/10.1016/j.ijpharm.2004.05.016
  19. F. Ganachaud and J. L. Katz, Nanoparticles and nanocapsules created using the Ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices, Chem, Phys, Chem., 6, 209 (2005). https://doi.org/10.1002/cphc.200400527
  20. A. Forgiarini, J. Esquena, C. Gonzalez, and C. Solans, Formation of nano-emulsions by low-energy emulsification methods at constant temperature, Langmuir, 17, 2076 (2001). https://doi.org/10.1021/la001362n
  21. P. Fernandez, V. Andre, J. Rieger, and A. Kuhnle, Nano-emulsion formation by emulsion phase inversion, Colloids Surf., A251, 53 (2004).
  22. W. Liu, D. Sun, C. Li, Q. Liu, and J. Xu, Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method, J. Colloid Inter. Sci., 303, 557 (2006). https://doi.org/10.1016/j.jcis.2006.07.055
  23. O. Sonneville-Aubrun, D. Babayan, D. Bordeaux, P. Lindner, G. Rata, and B. Cabane, Phase transition pathways for the production of 100 nm oil-in-water emulsions, Phys. Chem. Chem. Phys., 11, 101 (2009). https://doi.org/10.1039/B813502A
  24. P. Heunemann, S. Prevost, I. Grillo, C. M. Marino, J. Meyer, and M. Gradzielski, Formation and structure of slightly anionically charged nanoemulsions obtained by the phase inversion concentration (PIC) method, Soft Mater, 7, 5697 (2011). https://doi.org/10.1039/c0sm01556c
  25. M. Hessien, N. Singh, C. Kim, and E. Prouzet, Surfactant concentration regime in miniemulsion polymerization for the formation of MMA nanodroplets by high-pressure homogenization, Langmuir, 27, 2299 (2011). https://doi.org/10.1021/la104728r
  26. K. Roger and B. Cabane, Emulsification through surfactant hydration: The PIC process revisited, Langmuir, 27(2), 604 (2011). https://doi.org/10.1021/la1042603
  27. P. Izquierdo, J. Esquena, Th. F. Tadros, C. Dederen, M. J. Garcia, N. Azemar, and C. Solans, Formation and stability of nano-emulsions prepared using the phase inversion temperature method, Langmuir, 18, 26 (2002). https://doi.org/10.1021/la010808c
  28. D. Morales, J. M. Gutierrez, M. J. Garcia-Celma, and C. Solans, A study of the relation between bicontinuous microemulsions and oil/water nanoemulsion formation, Langmuir, 19, 7196 (2003). https://doi.org/10.1021/la0300737
  29. P. Izquierdo, J. Esquena, Th. F. Tadros, C. Dederen, J. Feng, M. J. Garcia-Celma, N. Azemar, and C. Solans, Phase behavior and nano-emulsion formation by the phase inversion temperature method, Langmuir, 20(16), 6594 (2004). https://doi.org/10.1021/la049566h
  30. P. Izquierdo, J. Feng, J. Esquena, Th. F. Tadros, C. Dederen, M. J. Garcia-Celma, N. Azemar, and C. Solans, The influence of surfactant mixing ratio on nanoemulsion formation and stability, J. Colloid Inter. Sci., 285(1), 388 (2005). https://doi.org/10.1016/j.jcis.2004.10.047
  31. D. Morales, C. Solans, J. M. Gutierrez, M. J. Garcia-Celma, and U. Olsson, Oil/water droplet formation by temperature change in the water/C16E6/ mineral oil system, Langmuir, 22, 3014 (2006). https://doi.org/10.1021/la052324c
  32. P. Taylor and R. H. Ottewill, The formation and ageing rates of oil-in-water miniemulsions, Colloids Surf., A88, 303 (1994).
  33. P. Taylor, Ostwald ripening in emulsions, Adv. Colloid Inter. Sci., 75, 107 (1998). https://doi.org/10.1016/S0001-8686(98)00035-9
  34. R. Pons, I. Carrera, J. Caelles, J. Rouch, and P. Panizza, Formation and properties of miniemulsions formed by microemulsions dilution, Adv. Colloid Inter. Sci., 106, 129 (2003). https://doi.org/10.1016/S0001-8686(03)00108-8
  35. I. Sole, A. Maestro, C. Gonzalez, C. Solans, and J. M. Gutierrez, Optimization of nano-emulsion preparation by low energy methods in an ionic surfactant system, Langmuir, 22, 8326 (2006). https://doi.org/10.1021/la0613676
  36. I. Sole, A. Maestro, C. Gonzalez, C. Solans, and J. M. Gutierrez, Influence of the phase behavior on the properties of ionic nanoemulsions prepared by the phase inversion composition method, J. Colloid Inter. Sci., 327, 433 (2008). https://doi.org/10.1016/j.jcis.2008.07.059
  37. A. Wadle, Th. Forster, and W. von Rybinski, Influence of the microemulsion phase structure on the phase inversion temperature emulsification of polar oils, Colloids Surf., A76, 51 (1993).
  38. L. Wang, K. J. Mutch, J. Eastoe, R. K. Heenan, and J. Dong, Nanoemulsions prepared by a two-step low-energy process, Langmuir, 24, 6092 (2008). https://doi.org/10.1021/la800624z
  39. L. Wang, R. Tabor, J. Eastoe, X. Li, R. K. Heenan, and J. Dong, Formation and stability of nanoemulsions with mixed ionic-nonionic surfactants, Chem. Phys. Chem., 11, 9772 (2009). https://doi.org/10.1039/b912460h
  40. J. L. Salager, A. Forgiarini, J. C. Lopez-Momtilla, and L. Marquez, Low-energy emulsification by phase inversion techniques: Trends and Tricks, 4th World Congress on Emulsion, Lyon France, 222 (2006).
  41. K. Roger, B. Cabane, and U. Olsson, Formation of 10-100 nm size-controlled emulsions through a sub-PIT cycle, Langmuir, 26(6), 3860 (2010). https://doi.org/10.1021/la903401g
  42. Z. Mei, S. Liu, L. Wang, J. Jiang, J. Xu, and D. Sun, Preparation of positively charged oil/water nano-emulsions with a sub-PIT method, J. Colloid Inter. Sci., 361, 565 (2011). https://doi.org/10.1016/j.jcis.2011.05.011
  43. H. J. Yang, W. G. Cho, and S. N. Park, Stability of oil-in-water nano-emulsions prepared using the phase inversion composition method, J. Ind. Eng. Chem., 15, 331 (2009). https://doi.org/10.1016/j.jiec.2009.01.001
  44. F. O. Opawale and D. J. Burgess, Influence of interfacial rheological properties of mixed emulsifier films on the stability of water-in-oil-in-water emulsions, J. Pharm. Pharmacol., 50(9), 965 (1998). https://doi.org/10.1111/j.2042-7158.1998.tb06910.x
  45. R. Pichot, F. Spyropoulos, and I. T. Norton, Mixed-emulsifier stabilised emulsions: Investigation of the effect of monoolein and hydrophilic silica particle mixtures on the stability against coalescence, J. Colloid Inter. Sci., 329, 284 (2009). https://doi.org/10.1016/j.jcis.2008.09.083

Cited by

  1. Effect of Storage Temperature on the Dispersion Stability of O/W Nano-emulsions vol.29, pp.5, 2014, https://doi.org/10.7841/ksbbj.2014.29.5.385