• Title/Summary/Keyword: nanoemulsions

Search Result 49, Processing Time 0.032 seconds

The Functional Behaviors of Cosurfactant in Design of Self-nanoemulsifying Drug Delivery Systems

  • Yang, Su-Geun;Shin, Hee-Jong
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.5
    • /
    • pp.263-267
    • /
    • 2010
  • Nanoemulsions have been widely investigated for many years because of their attractive and unique characteristics. Nanoemulsions are composed of oil, surfactant, co-surfactant and water. Especially, cosurfactant plays a critical role in formation of nanoemulsions. In pharmaceutical area, a pre-concentrate form of nanoemulsions which is known as self-nanoemulsifying drug delivery systems (SNEDDS) was available for some water-insoluble drugs. In this study, we investigated the functional behaviors of cosurfactant in design of SNEDDS and nanoemulsions. Cremophor RH 40$^{(R)}$, Propylene carbonate and medium chain triglyceride were selected for surfactant, cosurfactant and oil, respectively. Cyclosporine was employed as a drug. Phase diagrams showed the area of isotropic o/w region which forms o/w nanoemulsions was not significantly affected by the compositional ratio of cosurfactant. But, drug solubilization capacity, droplet size of nanoemulsions and drug release rate were greatly affected by the cosurfactant.

Preparation and Stability of Capsaicin-loaded Nanoemulsions by Microfluidazion (미세유동화법으로 제조한 캡사이신 함유 나노에멀션의 안정성)

  • Kim, Min-Ji;Lee, Soo-Jeong;Kim, Chong-Tai
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.6
    • /
    • pp.985-997
    • /
    • 2016
  • The objectives of this study, which filled gaps in previous studies, were: (1) to find the optimal mixing condition of nanoemulsions containing oleoresin capsicum (OC), Tween 80, propylene glycol (PG), and sucrose monostearate (SES) by microfluidization; (2) to investigate their properties and stability depending on such factors as pH, temperature, and heating time; (3) to measure the effect of adding ascorbic acid. In order to test these objectives, the following three experiments were conducted: Firstly, in order to find the optimal mixing ratio, nanoemulsions containing OC - the mean diameter of which is smaller than 100 nm - were prepared through the process of microfluidization; and their mean particle size, zeta potential, and capsaicinoids were measured. The test results indicated that the mixing ratio at OC : Tween 80 : PG + water(1:2) = 1 : 0.2 : 5 was optimal. Secondly, the properties and stability of nanoemulsions were investigated with varying parameters. The test results illustrated that single-layer nanoemulsions and double-layer nanoemulsions coated with alginate were stable, irrespective of all the parameters other than/except for pH 3. Thirdly, the properties of nanoemulsions were then analyzed according to the addition of ascorbic acid. The results demonstrated that the properties of single-layer nanoemulsions were not affected by addition of ascorbic acid. In case of alginate double-layer nanoemulsions, the particle size was reduced, and zeta potential increased with the addition of ascorbic acid. In conclusion, the demonstrated stability of various nanoemulsions under the different conditions in the present study suggests that these findings may constitute a basis in manufacturing various food-grade products which use nanoemulsions-and indicate that food nanoemulsions, if adopted in the food industry, have the potential to satisfy both the functionality and acceptability requirements necessary to produce commercially marketable food-grade products.

Preparation and Characterization of Resveratrol Nanoemulsions Stabilized by Self-assembly and Complex Coacervation Consisting of Sodium Alginate, Chitosan, and β-Cyclodextrin

  • Choi, Ae-Jin;Jo, Younghee;Cho, Yong-Jin;Kim, Tae-Eun;Kim, Chong-Tai
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.215-224
    • /
    • 2017
  • Resveratrol was incorporated into various combinations of single- and double-layer nanoemulsions, prepared by self-assembly emulsification and complex coacervation with chitosan, alginate, and ${\beta}$-cyclodextrin, respectively. Resveratrol nanoemulsions were composed of medium-chain trigacylglycerols (MCTs), $Tween^{(R)}$ 80, water, chitosan, alginate, and ${\beta}$-cyclodextrin. The corresponding mixtures were formulated for the purpose of being used as a nutraceutical delivery system. Resveratrol nanoemulsions were obtained with particle sizes of 10-800 nm, with the size variation dependent on the emulsification parameters including the ratio of aqueous phase and surfactant ratio. Resveratrol nanoemulsions were characterized by evaluating particle size, zeta-potential value, stability, and release rate. There were no significant changes in particle size and zeta-potential value of resveratrol nanoemulsions during storage for 28 days at $25^{\circ}C$. The stability of resveratrol in the double-layer nanoemulsions complexed with chitosan or ${\beta}$-cyclodextrin was higher, compared with the single-layer nanoemulsions.

Antimicrobial Activity of Lavander and Rosemary Essential Oil Nanoemulsions (라벤더와 로즈마리 에센셜 오일 나노에멀션의 항균 활성)

  • Kim, Min-Soo;Lee, Kyoung-Won;Park, Eun-Jin
    • Korean journal of food and cookery science
    • /
    • v.33 no.3
    • /
    • pp.256-263
    • /
    • 2017
  • Purpose: Essential oils are secondary metabolites of herbs and have antibacterial activities against foodborne pathogens. However, their applications for food protection are limited due to the hydrophobic and volatile natures of essential oils. Methods: In this study, essential oil nanoemulsions of rosemary and lavender were formulated with non-ionic surfactant Tween 80 and water using ultrasonic emulsification, and their antibacterial effects were determined. Results: The antibacterial activities of nanoemulsions were evaluated against 12 strains of 10 bacterial species, and significant antibacterial effects were observed against four Gram-positive and four Gram-negative bacteria but not against Streptococcus mutans and Shigella sonnei. In the disc diffusion test, the diameter of the inhibition zone proportionally increased with the concentration of nanoemulsions. Using cell turbidity measurement, minimum bactericidal concentration (MBC) of the nanoemulsions, which is the lowest concentration reducing viability of the initial bacterial inoculum by ${\geq}99.9%$, was significantly higher than the minimum inhibitory concentration (MIC) of the nanoemulsions. The largest bactericidal effects of lavender and rosemary essential oil nanoemulsions were observed against S. enterica and S. aureus, respectively. Conclusion: Nanoemulsion technique could improve antibacterial activity of essential oil nanoemulsions by increasing the solubility and stability of essential oils. Our findings shed light on the potential use of essential oil nanoemulsions as an alternative to chemical sanitizers in food protection.

Production and Characterization of Beta-lactoglobulin/Alginate Nanoemulsion Containing Coenzyme Q10: Impact of Heat Treatment and Alginate Concentrate

  • Lee, Mee-Ryung;Choi, Ha-Neul;Ha, Ho-Kyung;Lee, Won-Jae
    • Food Science of Animal Resources
    • /
    • v.33 no.1
    • /
    • pp.67-74
    • /
    • 2013
  • The aims of this research were to produce oil-in-water ${\beta}$-lactoglobulin/alginate (${\beta}$-lg/Al) nanoemulsions loaded with coenzyme $Q_{10}$ and to investigate the combined effects of heating temperature and alginate concentration on the physicochemical properties and encapsulation efficiency of ${\beta}$-lg/Al nanoemulsions. In ${\beta}$-lg/Al nanoemulsions production, various heating temperatures (60, 65, and $70^{\circ}C$) and alginate concentrations (0, 0.01, 0.03, and 0.05%) were used. A transmission electron microscopy was used to observe morphologies of ${\beta}$-lg/Al nanoemulsions. Droplet size and zeta-potential values of ${\beta}$-lg/Al nanoemulsions and encapsulation efficiency of coenzyme $Q_{10}$ were determined by electrophoretic light scattering spectrophotometer and HPLC, respectively. The spherically shaped ${\beta}$-lg/Al nanoemulsions with the size of 169 to 220 nm were successfully formed. The heat treatments from 60 to $70^{\circ}C$ resulted in a significant (p<0.05) increase in droplet size, polydispersity, zeta-potential value of ${\beta}$-lg/Al nanoemulsions, and encapsulation efficiency of coenzyme $Q_{10}$. As alginate concentration was increased from 0 to 0.05%, there was an increase in the polydispersity index of ${\beta}$-lg/Al nanoemulsions and encapsulation efficiency of coenzyme $Q_{10}$. This study demonstrates that heating temperature and alginate concentration had a major impact on the size, polydispersity, zeta-potential value and encapsulation efficiency of coenzyme $Q_{10}$ in ${\beta}$-lg/Al nanoemulsions.

Preparation of Phospholipid Nanoemulsions Loaded with Paclitaxel (파클리탁셀을 함유한 인지질 나노 에멀젼 제조)

  • Seo, Dong-Hoan;Han, Hee-Dong;Chi, Sang-Cheol;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.2
    • /
    • pp.125-130
    • /
    • 2004
  • Paclitaxel is an effective antineoplastic drug for various cancers especially ovarian and breast cancer. This study is to find the optimum condition for the preparation of nanoemulsions and to improve the stability and loading amount of paclitaxel in nanoemulsions. Nanoemulsions were prepared by modified spontaneous emulsification solvent diffusion method. It was composed of phosphatidylcholine:cholesterol:1,2-Distearoyl-sn-Glycero-3-Phosphoethanolamine-N-[Metoxy (Polyethylene glycol)-2000]:paclitaxel at a weight ratio of 5:3:1:1 and the Tween 80 as a surfactant. The particle size and the shape of nanoemulsions were measured by particle analyzer and SEM, respectively. The loading amount of paclitaxel in nanoemulsion was measured by UV-visible spectroscopy at 227 nm. The particle sizes were $80{\sim}120\;nm$ and the loading efficiency of paclitaxel was $8{\sim}39%$. The optimum conditions for the preparation of nanoemulsions were 8% w/w phospholipid, 16% w/v Tween 80 and 2% w/w paclitaxel, respectively.

Stability of W/O Nanoemulsions with Low Viscosity Prepared by PIC Method (PIC 방법으로 제조된 저점도 W/O 나노에멀젼의 안정성)

  • Cho, Wan Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.2
    • /
    • pp.127-133
    • /
    • 2016
  • In this study, water-in-oil (W/O) nanoemulsions of water/Span 80-Nikkol BL 25/oil system were prepared by the PIC method at elevated temperature. This method allows the formation of finely dispersed W/O nanoemulsions with low viscosity in this system. However, macroemulsions rather than nanoemulsions were prepared by PIC method at room temperature. As a result of the significant change of interfacial tension with temperature, the emulsion droplet size decreases from $2{\mu}m$ to 100 nm with the increase in temperature from $30^{\circ}C$ to $80^{\circ}C$. The droplet size of nanoemulsions prepared at $80^{\circ}C$ was in the range of 50 ~ 200 nm and the internal phase content could reach as high as 15 wt%. The most stable nanoemulsion was formed in the vicinity of 7.0 of optimum HLB of the emulsifier mixture. The obtained nanoemulsions were stable without obvious change in droplet size in one month. This study provides valuable information for optimizing the formation of W/O nanoemulsions with low viscosity. These results suggest that W/O nanoemulsions of low viscosity could be useful for cosmetics with soft feeling.

Effects of Surfactants on the Formation and Stability of Capsaicinloaded Nanoemulsions

  • Choi, Ae-Jin;Kim, Chul-Jin;Cho, Yong-Jin;Hwang, Jae-Kwan;Kim, Chong-Tai
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1161-1172
    • /
    • 2009
  • Food nanoemulsion systems consisting of water and oleoresin capsicum (OC), polyoxythylene sorbitan esters (Tween 20, 40, 60, and 80), propylene glycol (PG), sucrose monostearate (SM), and their corresponding mixtures were formulated to use as food vehicles. Tween 80 produced OC nanoemulsions with stable dispersions as one-phase systems, and the dertermined emulsification efficiencies clearly distinguished the ability of the various surfactants to emulsify OC. The nanoemulsions were prepared by both ultrasonication and self-assembly, and the nanoemulsion areas were determined using phase diagrams by measuring the sizes of the emulsions. One-phase nanoemulsions were presented, with a multiple cloudy region and phase separation that were dependent on the particle size of the emulsion. The OC nanoemulsions prepared by ultrasonication using systems of OC/Tween 80/water, OC/Tween 80/water+PG, and OC/Tween 80/water+SM, resulted in particle sizes ranging from 15 to 100 nm. Finally, the nanoemulsions maintained their initial sizes during storage, ranging from 65 to 92 nm.

Candelilla Wax Nanoemulsions Prepared by Phase Inversion Composition (PIC) Method

  • Kim, Eun-Hee;Cho, Wan-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.203-209
    • /
    • 2014
  • Candelilla wax-in-water nanoemulsions stabilized by Span 80/Tween 80 were prepared by the phase inversion composition (PIC) method. Stable nanoemulsions with droplet diameters below 50 nm could be formed when the hydrophilic-lipophilic balance (HLB) values were between 13.5 and 14.5, surfactant concentration was 5.0 wt%, and the surfactant-wax ratio was 1:1. Increased emulsification temperature and cooling rate were found to improve the emulsion properties. Process of PIC (adding aqueous phase to the wax phase) produced smaller droplet size nanoemulsion compared to the process of adding wax phase to the aqueous phase. The stability of these nanoemulsions was assessed by following the change in droplet diameters with time of storage at room temperature (${\sim}25^{\circ}C$). The size remained constant during 2 months storage time.

Stable Liquid Paraffin-in-Water Nanoemulsions Prepared by Phase Inversion Composition Method (조성 상전이 방법으로 제조된 안정한 액상 파라핀-물 나노에멀젼)

  • Kim, Eun Hee;Cho, Wan Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.133-139
    • /
    • 2014
  • Oil-in-water nanoemulsions were prepared in the system of water/Span 80-Tween 80/long-chain paraffin oil via the PIC (phase inversion composition) method. With the increase of preparation temperature from $30^{\circ}C$ to $80^{\circ}C$, the diameter of emulsion droplets decreased from 120 nm to 40 nm, proving the formation of nanoemulsions. By varying the HLB (hydrophilic lipophilic balance) of mixed surfactants, we found that there was an optimum HLB around 12.0 ~ 13.0 corresponding to the minimum droplet size. The viscosity of nanoemulsions clearly increased with droplet volume fraction, f, but the droplet size slightly increased. Significantly, at ${\phi}{\leq}0.3$, the size distribution of nanoemulsions kept constant more than 2 months. These results proved that the viscous paraffin oil can hardly be dispersed by the PIC method at $30^{\circ}C$, but the increase in preparation temperature makes it possible for producing monodisperse nanoemulsions. Once the nanoemulsion is produced, the stability against Ostwald ripening is outstanding due to the extremely low solubility of the liquid paraffin oil in the continuous phase. The highly stable nanoemulsions are of great importance in cosmetic applications.