References
- Simpson, T., Poplinski, J. and Koch, P., 2001, Metamodels for Computer-based Engineering Design: Survey and Recommendations, Engineering with Computers, 17, pp. 129-150. https://doi.org/10.1007/PL00007198
- Queipo, N. et al., 2005, Surrogate-based Analysis and Optimization, Progress in Aerospace Sciences, 41, pp. 1-28. https://doi.org/10.1016/j.paerosci.2005.02.001
- Forrester, A. and Keane, A., 2009, Recent Advances in Surrogate-based Optimization, Progress in Aerospace Sciences, 45(1), pp. 50-79. https://doi.org/10.1016/j.paerosci.2008.11.001
- Jin, Y., 2011, Surrogate-assisted Evolutionary Computation: Recent Advances and Future Challenges, Swarm and Evolutionary Computation, 1, pp. 61-70. https://doi.org/10.1016/j.swevo.2011.05.001
- Jin, R., Chen, W. and Simpson, T., 2001, Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria, Structural and Multidisciplinary Optimization, 23, pp. 1-13 https://doi.org/10.1007/s00158-001-0160-4
- Kleijnen, J.P.C., et al., 2005, State-of-the-Art Review: A User's Guide to the Brave New World of Designing Simulation Experiments, INFORMS Journal on Computing, 17(3), pp. 263-289. https://doi.org/10.1287/ijoc.1050.0136
- Wang, G.G. and Shan, S., 2007, Review of Metamodeling Techniques in Support of Engineering Design Optimization, Journal of Mechanical Design, 129, pp. 370-380. https://doi.org/10.1115/1.2429697
- Reisenthel, P.H. and Lesieutre, D.J., 2010, Statistical Benchmarking of Surrogate-Based and Other Optimization Methods Constrained by Fixed Computational Budget, 51st AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 12-15, Orlando, Florida, pp. 1-16.
- Bettebghor, D., Bartoli, N., Grihon, S., Morlier, J. and Samuelides, M., 2010, Surrogate Modeling Approximation Using a Mixture of Experts Based on EM Joint Estimation, Structural and Multidisciplinary Optimization, 43(2), pp. 243-259.
- Li, Y.F., Ng, S.H., Xie, M. and Goh, T.N., 2010, A Systematic Comparison of Metamodeling Techniques for Simulation Optimization in Decision Support Systems, Applied Soft Computing, 10(4), pp. 1256-1272.
- Barton, R.R. and Meckesheimer, M., 2006, Metamodel- Based Simulation Optimization, Handbooks in Operations Research and Management Science, 13(18), pp. 535-574. https://doi.org/10.1016/S0927-0507(06)13018-2
- Wojciechowski, S., 2010, A Method for Simulation Based Optimization Using Radial Basis Functions, Optim Eng., 11, pp. 501-532. https://doi.org/10.1007/s11081-009-9087-1
- Kazemi, M., Wang, G., Rahnamayan, S. and Gupta, K., 2011, Metamodel-Based Optimization for Problems with Expensive Objective and Constraint Functions, Journal of Mechanical Design, 133, pp. 014505-1-7. https://doi.org/10.1115/1.4003035
- Goel, T., Haftka, R.T., Shyy, W. and Queipo, N.V., 2006, Ensemble of Surrogates, Structural and Multidisciplinary Optimization, 33(3), pp. 199- 216.
- Sanchez, E., Pintos, S. and Queipo, N.V., 2007, Toward an Optimal Ensemble of Kernel-based Approximations with Engineering Applications, Structural and Multidisciplinary Optimization, 36(3), pp. 247-261.
- Acar, E. and Rais-Rohani, M., 2008, Ensemble of Metamodels with Optimized Weight Factors, Structural and Multidisciplinary Optimization, 37(3), pp. 279-294
- Zhou, X.J., Ma, Y.Z. and Li, X.F., 2011, Ensemble of Surrogates with Recursive Arithmetic Average, Structural and Multidisciplinary Optimization, 44(5), pp. 651-671. https://doi.org/10.1007/s00158-011-0655-6
- Gu, J., Li, G.Y. and Dong, Z., 2011, Hybrid and Adaptive Meta-model-based Global Optimization, Engineering Optimization, pp. 1-18.
- Muller J. and Piche, R., 2010, Mixture Surrogate Models Based on Dempster-Shafer Theory for Global Optimization Problems, Journal of Global Optimization, 51(1), pp. 79-104.
- Viana, F.A.C., Haftka, R.T. and Steffen, V., 2009, Multiple Surrogates: How Cross-validation Errors Can Help Us to Obtain the Best Predictor, Structural and Multidisciplinary Optimization, 39(4), pp. 439-457. https://doi.org/10.1007/s00158-008-0338-0
- Viana, F.A.C., Haftka, R.T. and Watson, L.T., 2012, Efficient Global Optimization Algorithm Assisted by Multiple Surrogate Techniques, Journal of Global Optimization, DOI 10.1007/s10898-012-9892-5.
- McKay, M.D., 1992, Latin Hypercube Sampling as a Tool in Uncertainty Analysis of Computer Models, Proceedings of the 1992 Winter Simulation Conference, pp. 557-564.
- Johnson, M.E., Moore, L.M. and Ylvisaker, D., 1990, Minimax and Maximin Distance Designs, Journal of Statistical Planning and Inference, 26, pp. 131-148. https://doi.org/10.1016/0378-3758(90)90122-B
- Leary, S., Bhaskar, A. and Keane, A., 2003, Optimal Orthogonal-array-based Latin Hypercubes, Journal of Applied Statistics, 30(5), pp. 585-598. https://doi.org/10.1080/0266476032000053691
- Cioppa, T.M. and Lucas, T.W., 2007, Efficient Nearly Orthogonal and Space-filling Latin Hypercubes, Technometrics, 49, pp. 45-55. https://doi.org/10.1198/004017006000000453
- Deutsch, J.L. and Deutsch, C.V., 2012, Latin Hypercube Sampling with Multidimensional Uniformity, Journal of Statistical Planning and Inference, 142(3), pp. 763-772. https://doi.org/10.1016/j.jspi.2011.09.016
- Zhu, H., Liu, L., Long, T. and Peng, L., 2011, A Novel Algorithm of Maximin Latin Hypercube Design Using Successive Local Enumeration, Engineering Optimization, pp. 1-14.
- Crombecq, K., Laermans, E. and Dhaene, T., 2011, Efficient Space-filling and Non-collapsing Sequential Design Strategies for Simulationbased Modeling, European Journal of Operational Research, 214(3), pp. 683-696. https://doi.org/10.1016/j.ejor.2011.05.032
- Crombecq, K., 2010, Generating Sequential Space-filling Designs Using Genetic Algorithms and Monte Carlo Methods, SEAL'10 Proceedings of the 8th International Conference on Simulated Evolution and Learning, pp. 80-84.
- Singhee, A. and Rutenbar, R.A., 2010, Why Quasi-Monte Carlo is Better Than Monte Carlo or Latin Hypercube Sampling for Statistical Circuit Analysis, IEEE Transactions on Computer- Aided Design of Integrated Circuits and Systems, 29(11), pp. 1763-1776. https://doi.org/10.1109/TCAD.2010.2062750
- Azoulay, A., 2011, Quasirandom Optimization, MS Thesis, The Florida State University, Dept. of Scientific Computing.
- Luo, C., Zhang, S.-L., Wang, C. and Jiang, Z., 2011, A Metamodel-assisted Evolutionary Algorithm for Expensive Optimization, Journal of Computational and Applied Mathematics, pp. 1-6.
- Yahyaie, F. and Filizadeh, S., 2011, A Surrogatemodel Based Multi-modal Optimization Algorithm, Engineering Optimization, 43(7), pp. 779- 799. https://doi.org/10.1080/0305215X.2010.517528
- Kuo, R.J. and Yang, C.Y., 2011, Simulation Optimization Using Particle Swarm Optimization Algorithm with Application to Assembly Line Design, Applied Soft Computing, 11(1), pp. 605-613. https://doi.org/10.1016/j.asoc.2009.12.020
- Liu, H. and Maghsoodloo, S., 2011, Simulation Optimization Based on Taylor Kriging and Evolutionary Algorithm, Applied Soft Computing Journal, 11(4), pp. 3451-3462. https://doi.org/10.1016/j.asoc.2011.01.017
- Liu, H., 2009, Taylor Kriging Metamodeling For Simulation Interpolation, Sensitivity Analysis And Optimization, Ph.D. Thesis, Auburn University.
- Jones, D.R., Schonlau, M. and Welch, W.J., 1998, Efficient Global Optimization of Expensive Black-Box Functions, Journal of Global Optimization, 13, pp. 455-492. https://doi.org/10.1023/A:1008306431147
- Rafael, G.D.R. and Salinas, C.J.S., 2011, Empirical Study of Surrogate Models for Black Box Optimizations Obtained Using Symbolic Regression via Genetic Programming, GECCO'11, July 12-16, Dublin, Ireland. ACM 978-1-4503-0690-4/11/07.
- Yang, X.-S., 2010, Test Problems in Optimization, Engineering Optimization: An Introduction with Metaheuristic Applications (Eds Xin-She Yang), John Wiley & Sons.
- Viana, F.A.C., 2011, SURROGATES Toolbox User's Guide, Version 3.0, available at http://sites.google.com/site/felipeacviana/surrogatestoolbox.
- Donckels, Brecht, M.R., 2009, Optimal Experimental Design to Discriminate Among Rival Dynamic Mathematical Models, PhD Thesis, Dept. of Applied Mathematics, Biometrics and Process Control, Ghent University, Ghent, Belgium, MATLAB toolbox is available at http://biomath.ugent.be/-brecht/downloads.html.
- Berry, M.W. and Minser, K.S., 1999, Algorithm 798: High-dimensional Interpolation Using the Modified Shepard Method, ACM Transactions on Mathematical Software, 25(3), pp. 353-366. https://doi.org/10.1145/326147.326154
Cited by
- Surrogate-Based Improvement on Cuckoo Search for Global Constrained Optimization vol.19, pp.3, 2014, https://doi.org/10.7315/CADCAM.2014.245